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ABSTRACT
Data curation for interdisciplinary collaborative science requires a

new online web-based approach that integrates domain knowledge

from multiple resources and enables in tela (in the web) interac-

tive collaboration between data providers, domain specialists, and

data analysts. �e Children’s Health Exposure Analysis Resource

(CHEAR) is a resource for child development and environmental

exposure data. �e CHEAR Data Center has developed an ontology

that integrates study and exposure data in a way that is consistent

across the program, and integrates with many best practice relevant

vocabularies and repository schemas. �is includes the World Wide

Web Consortium’s recommended Provenance Ontology (PROV),

Semanticscience Integrated Ontology (SIO), the Chemical Entities

of Biological Interest (CheBI) ontology, the Uberon multi-species

anatomy ontology, and the Units Ontology as the starting point for

our domain modeling. We mapped terms where they overlapped

and extended these ontologies with classes that were required to

support modeling and integrating data from epidemiology and

chemical exposure measurements that comprise the majority of

the data recorded by the CHEAR data center. In response to this

challenge, we used an on-demand approach to develop the ontol-

ogy based on a set of representative pilot projects in CHEAR. A�er

initial development, we evaluated the ontology for completeness in

representing an additional pilot study. An epidemiologist was able

to produce a mapping of the project to the ontology with only mi-

nor corrections needed by an ontology expert. In the large dataset

that was tested, one third of the classes needed to represent the

dataset needed to be added to the ontology, all of them in areas

where we expected to see more ontology expansion. Our overall

approach is to drive towards completion of coverage while being

relatively easy to use for domain experts. Ultimately we aim to have

domain experts handle the majority of extensions and evolution

with small interactions with ontology experts. In this paper, we
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report on our on-demand approach for web-based collaborative

interdisciplinary ontology development and maintenance and also

introduce the resulting extensible and interoperable exposure and

child health ontology.

1 INTRODUCTION
Interdisciplinary science typically requires collaboration across

multiple laboratories, o�en involving people with a wide variety

of expertise areas, and it is critical to align data across multiple

organizations typically in multiple domains. When these e�orts

evolve into large scale collaborations, as in the case of the National

Institute of Environmental Health Sciences (NIEHS)-funded Chil-

dren’s Health Exposure Analysis Resource (CHEAR), the challenges

also increase. In order to support the alignment, we are developing

an interdisciplinary ontology addressing issues related to exposure

and health at a variety of levels of granularity and from a wide

range of perspectives. Challenges arise when developing such an

interdisciplinary ontology relating to determining what should be

modeled, at what level of detail, what vocabularies, schemas, and

ontologies should be used as starting points, what alignments are

needed, and what gaps need to be addressed. To manage the repre-

sentational load and great diversity in content, we have a�empted

to apply the YAGNI (You Aren’t Gonna Need It) principle from so�-

ware engineering [11], only adding something on demand when

we are sure we will need it. One question is how does YAGNI mesh

with managing appropriate modeling of diverse data collections

resulting from epidemiologically motivated studies? �e data that

the CHEAR program needs to manage covers several domains, and

the data gathered by epidemiologists, while containing some com-

monalities, is diverse in its consideration of social, environmental,

developmental, educational, and other factors, making the potential

space of data representation large. �ese studies are themselves

a combination of medical, social, behavioral, and economic data

with environmental exposure data, that in turn, covers a broad set

of chemical analysis, proteomic, genomic, and epigenomic data.

CHEAR supplements existing epidemiological studies with expo-

sure data in an e�ort to provide amore holistic se�ing for data analy-

sis over individual and pooled data. One goal is to provide a resource

that includes an integrated representation of many independently-

funded studies across the public health domain. In this broad in-

terdisciplinary se�ing, as in most situations, it was essential to



pick a core set of ontologies to provide a starting point. We looked

for well used, well designed ontologies that were extensible, that

covered key areas, and that were maintained by appropriate groups

on which to base our work. In this paper, we report on the very

positive experience we had using on-demand approach to ontology

generation and maintenance in combination with web standards

and enhanced web-based semantic infrastructure. We found that we

can facilitate e�cient collaboration by supporting and integrating

to a common view of data from epidemiology, materials analysis

labs, and -omics (proteomics, genomics, and others) specialists to

provide a coherent view for data analysts. �is paper provides

insight into our approach, describes some of the bene�ts, and also

introduces the resulting interdisciplinary and extensible exposure

and health ontology.

2 RELATEDWORK
While there is a range of related work on which to build, no sin-

gle ontology and in fact, no set of ontologies adequately covers

the breadth and depth needed for exposure science, health, and

development as a foundation for integrative data repositories. Only

one ontology that we know of provides explicit support for en-

vironmental exposures, the Environmental Exposures Ontology

(ExO) [18]. It focuses on modeling exposure events, but does not

itself support data representation. Other ontologies and knowledge

graphs, such as ChEBI [4], PubChem [29], and UniProt [13] provide

identi�ers for speci�c chemicals and changes to blood chemistry,

but do not model how they relate to outcomes or to conventional

epidemiological variables.

2.1 Ontology Development
Much of the current literature on ontology development involves

the application of either top-down or bo�om-up approaches, specif-

ically the ones reviewed in [14] and [3]. Our approach, called the

”Semantic eScience Methodology” [8], initially developed for vir-

tual observatories, proposed a middle out approach, which was

use case driven and iterative, and grows the representations into

speci�city without focusing initially on alignment with an upper

level ontology. We extend this approach through two main direc-

tions. First, we have developed additional tools to more tightly

integrate domain experts into the ongoing ontology development

team through use of tabular editing tools. Second, we focus on

coverage of data representation for a growing set of studies. We use

these studies as use cases to determine requirements and priorities

for expansion. �ird, we start with a core set of ontologies that

provide a common upper- and mid-level ontology representation in

appropriate areas. �ese provide a lens through which to organize

our data representation e�orts.

2.2 Foundational Ontologies
In order to leverage the existing best practices work from the on-

tology and relevant domain communities, the CHEAR Ontology

builds on several foundational ontologies. �e ontologies discussed

here are all integrated and organized in the Human-Aware Science

Ontology (HAScO) [24], which the CHEAR Ontology in turn im-

ports. �e Semanticscience Integrated Ontology (SIO) [5] de�nes

types and relations for objects, processes and a�ributes, and there-

fore provides the integrated framework from which the ontology

is rooted. SIO is a self-contained ontology that provides support

for information resources; as well as hypothetical, �ctional, and

imaginary entities, and it has seen increasing usage, particularly

in biomedical se�ings. It is not integrated with other ontologies,

but we were able to easily integrate it with other ontologies in

HAScO. In order to capture the provenance of concepts included in

the ontology, such as the source or how a term was generated, we

use the World Wide Web Consortium’s (W3C)’s [16] recommended

language for provenance on the web - the PROV-O ontology. In

order to maintain details about data acquisition measurements,

such as instruments or analytical methods used, the Virtual Solar

Terrestrial Observatory Instruments (VSTOi) Ontology [8] and the

Human-Aware Sensor Network Ontology (HASNetO) are leveraged

[24]. �e Units Ontology (UO) is used to incorporate a taxonomy

of both English and Metric units into the ontology [9]. While UO

does not cover every possible unit of measure, we have not yet had

a need to represent units that go beyond the ones in UO. As with

all ontology integration e�orts, there were some mismatches in

modeling perspectives. For example, while SIO treats units as OWL

individuals, UO treats them as classes. We solved this mismatch

using punning (in OWL 2) the UO classes to individuals as they

are used. For terms related to chemical entities and anatomy, we

turn to the Chemical Entities of Biological Interest (CheBI) [4] and

Uberon multi-species anatomy [23] ontologies, respectively. CHeBI

contains a large fraction of the chemicals analyzed in CHEAR, but

not yet all of them. CHeBI’s entities are well-de�ned with useful

data about chemical structure, biological roles, and other details.

We replicated the CHeBI style for the entities that we needed to

add and also submi�ed extension requests to the CHeBI team for

future integration, but in the meantime, those terms are in our

CHEAR ontology. We also use PubChem [15] as a source of addi-

tional chemical entities that aren’t yet in CheBI. Uberon contains

all of the biospecimen types that we expect to be processing in

CHEAR, except for buccal cells. �e disease ontology (DO) [27]

and ExO provide good starting points for capturing disease and

exposure terms. While DO is not as comprehensive as ICD, it is

focused on a more scienti�c treatment of diseases, instead of clas-

sifying diseases for medical administrative purposes, which has

been the primary use case of ICD. Our statistical classes, especially

variable types (like z-score) and methods are borrowed on demand

from the Statistics Ontology (STATO).
1
Finally, we use properties

from the Simple Knowledge Organization System (SKOS) [22] and

�e Dublin Core Terms (DC-Terms) [12] vocabularies to annotate

classes in our ontology.

3 DEVELOPMENT METHODS
Wedeveloped the CHEAR ontology by extending theHuman-Aware

Science Ontology (HAScO)
2
(which in turn integrates the PROV-O

and SIO ontologies). HAScO provides a standardized base for many

of our scienti�c data-oriented projects, and serves as the integration

point for our core science ontologies. HAScO contains concepts for

representing various studies, as well as the data acquisition process,

1
h�p://stato-ontology.org/

2
h�p://hadatac.org/ont/hasco/



Table 1: Table of ontologies used in the CHEAR Ontology organized by role. Imported ontologies are adopted wholesale
into CHEAR, while Annotation ontologies are used for concept metadata. MIREOT (Minimum Information to Reference and
External Ontology Term) ontologies have been identi�ed as on-demand sources for ontology extension. �ese ontologies are
compatible with CHEAR-O, and some of their classes have been included in CHEAR-O using MIREOT principles [2].

Role Ontology Pre�x URI

Imported SIO [5] sio h�p://semanticscience.org/resource/

PROV-O [16] prov h�p://www.w3.org/ns/prov#

Units Ontology [9] uo h�p://purl.obolibrary.org/obo/UO

HAScO [24] hasco h�p://hadatac.org/ont/hasco#

HASNetO [24] hasneto h�p://hadatac.org/ont/hasneto#

VSTO-I [8] vstoi h�p://hadatac.org/ont/vstoi#

Annotation SKOS [22] skos h�p://www.w3.org/2004/02/skos/core#

DC Terms [12] dc h�p://purl.org/dc/terms/

MIREOT CheBI [4] chebi h�p://purl.obolibrary.org/obo/CHEBI

STATO stato h�p://purl.obolibrary.org/obo/STATO

PubChem [15] pubchem h�p://rdf.ncbi.nlm.nih.gov/pubchem/compound/

Uberon [23] uberon h�p://purl.obolibrary.org/obo/UBERON

Disease Ontology do h�p://purl.obolibrary.org/obo/DOID

including instruments, deployments and platforms involved. From

a web semantics standpoint, HAScO provides a schema for model-

ing the acquisition process and a�ributes, which in turn allows for

mapping of study variables to ontology concepts. �is gives us our

foundation on which we base our ontology work. We then map

terms to each other as needed and identify ontology term gaps that

must be �lled by reviewing the CHEAR data speci�cations and the

CHEAR study data dictionaries, codebook terms and laboratory in-

formation. We use LabKey
3
, a web-based Laboratory Information

Management System (LIMS), to gather and curate class de�nitions,

annotations, and hierarchies. LabKey is also used to manage iden-

ti�ers for subjects and samples across CHEAR studies. LabKey

supports creation of “lists”, essentially spreadsheets, that we use

to generate the ontology from a Semantic Extract, Transform, and

Load (SETL) process that is described for SETLr.
4
Both domain

experts and ontology engineers have been using the web-based

LabKey lists as the means to collaborate on ontology development

by contributing and reviewing ontology de�nitions. SETLr is a tool

for transforming data from tabular, Extensible Markup Language

(XML), and JavaScript Object Notation (JSON) data sources into

Resource Description Framework (RDF). �is approach of building

the ontology from class de�nitions curated in a LIMS allows do-

main experts to provide content for and review the ontology within

a tabular format, organized through tables of things like analyte

types, sample types, roles, and epidemiological a�ributes. It does

this by using ETL-like work�ows and templating based on existing

web and semantic standards, like JSON-Linked Data (JSON-LD) [1],

PROV-O [16], and python libraries like Pandas [21], Jinja2
5
, and

RDFlib.
6

�e overall process is detailed in Figure 1. For CHEAR, we

primarily focus on the representational needs of the Pilot Study data

dictionaries and codebooks, as well as the data reporting templates

3
h�p://www.labkey.com/

4
h�ps://github.com/tetherless-world/setlr/

5
h�p://jinja.pocoo.org

6
h�p://rd�ib.readthedocs.io

created by the CHEAR program. For each potential class we identify,

we �rst check the ontology and foundational ontologies to see if

there is an adequate class. If there is an exact match, we note it

in a mapping table. If there is a partial match, we subclass that

match with the needed specialization. New classes are added to

one of several LabKey lists, depending on the subtree it is part

of. We have lists in LabKey for subtypes of object, a�ribute, role,

sample, analyte, and process. More complex class de�nitions that

are not yet supported by the SETLr conversion process are included

as ontology fragments in Turtle. �e SETL script enumerates the

fragments and LabKey lists and processes them all into a single

RDF graph. �e classes and their de�nitions, labels, and alternate

labels are reviewed by domain experts, and the lists are processed

by SETLr to create a generated ontology. �is ontology is imported

into HADatAC, where curators and reviewers can further comment

on it. �at feedback is incorporated into LabKey as well.

�e resulting ontology is published to the web.
7
�is initial

ontology was developed using �ve pilot studies that were deter-

mined to be representative of the studies that are anticipated to be

submi�ed to the CHEAR program. �e �ve pilot studies consisted

of four prospective birth cohorts and a clinical study of pediatric

allergic disease. In order to represent the expected future studies

that would enroll in CHEAR, the pilot studies were selected to

cover multiple health outcomes and multiple critical windows of

exposure and development including pregnancy, early infancy and

childhood. �e birth cohorts included questionnaire and biological

data on mother-child pairs while the clinical study also included

treatment data extracted from the child’s medical record. One of

the birth cohorts was conducted within an international study pop-

ulation. While all pilot studies had stored biospecimens that would

be analyzed within the CHEAR laboratories, the biological matri-

ces (sample types) varied by study and included serum, urine and

placenta.

With each study, we added classes that were determined to be

necessary to represent the data as presented in those studies. As

7
h�p://hadatatac.org/ont/chear/

https://github.com/tetherless-world/setlr/
http://hadatatac.org/ont/chear/


we accept more studies, the CHEAR ontology will be expanded to

support those studies. We anticipate a long-tail function in the need

to create additional classes, once we have covered the most common

classes. �is long tail is consistent with the YAGNI principle - the

most commonly needed capabilities are introduced at �rst, and

as new capabilities are needed, that are added to the system (or

ontology, in our case).

We have initial evidence that this approach is working well. We

used one of the initial pilot studies to evaluate coverage for the

required terms. We had excellent coverage except in two areas (

fertility methods and BMI rating categories), where we had not

a�empted to provide any modeling primitives, so this gap was

anticipated. Based on the evaluation, we had 74% coverage of

demographics, 100% coverage of environmental exposures, and 57%

of health/disease outcomes. Given the small number of initial pilot

studies and the anticipated gap �lling requirements for diseases as

related content emerges, we were impressed with these statistics.

As we reviewed one additional birth-cohort pilot we found similar

results. We had approximately 67% total coverage.�e primary gaps

were in investigator-de�ned categorizations of existing concepts,

like education.

We found the ontology useful to anyone who needs to model

data in epidemiology, especially with studies that perform signi�-

cant sample analysis. It is ready to be used as a public health data

interchange standard, and we expect that studies that use the on-

tology will �nd most of the classes they need in it. We are actively

recruiting users of the ontology and are encouraging requests if

the ontology is missing terminology needed to cover study data in

the general areas of exposure and child health.

We did not need to add any new properties to the CHEAR ontol-

ogy, as the approach of SIO is to create new a�ributes as objects

rather than statements. �is also allows us to add information about

when the a�ribute was determined (sio:measuredAt), if the a�ribute
was measured in relation to something else (sio:inRelationTo), what
the unit of measure is (sio:hasUnit), (for instance, concentration
of a substance in relation to the sample the substance is from), as

well as provenance information, like what other measurements (or

other objects) an a�ribute is derived from (prov:wasDerivedFrom)

and what methods were used (prov:wasGeneratedBy).
In Figures 2, 3, 4, and 5 we show how fundamental types of

data are represented. Figure 2 shows how child, mother, study,

and household relate in a set of core social/familial relationships,

using subclasses of sio:Role and the sio:hasRole. Figure 3 shows how
basic measurements are expressed via subclasses of sio:TimeInterval.
Anthropometry a�ributes, like head circumference, are expressed

on objects that are a type of head (from the UBERON Ontology)

that have an a�ribute of sio:Circumference. �e head objects are

then stated to be sio:isPartOf the subject the measurement was

taken from. Figure 4 shows how laboratory analysis can be ex-

pressed, by deriving a sample from the subject, and expressing

the sio:Concentration (sio:inRelationTo the sample) of a particular

molecular entity. Most of these entities are identi�ed in either

ChEBI or in PubChem. Figure 5 shows how the most common

genomic, transcriptomic, and epigenomic data can be represented.

�e �gure covers Single Nucleotide Polymorphisms (SNPs) and Vari-

ations (SNVs), genomic region Copy Number Variations (CNVs),

gene expression, and regulatory site methylation fraction.

�e ontology was developed initially using the CMap Ontology

Edition (COE) tool to model coverage of the initial four pilot studies

in the CHEAR program with a data scientist/ontologist and an epi-

demiologist. �is was aggregated into a set of lists stored in LabKey,

broken out by subtrees in the ontology. �ese lists continue to

be curated by data scientists, epidemiologists, and ontologists to

extend and improve the ontology as needed. �e o�cial ontology

is generated using the Semantic Extract, Transform, and Load-r

(SETLr) by writing an ontological interpretation of the lists and

their columns. A number of classes, like Z-Fenton Birth Weight [7],

BMI, and others have been enriched with extended OWL restric-

tions that are di�cult to express in a tabular format. We include

those de�nitions in OWL/RDF fragments that are combined during

the SETL process. �e resulting ontology is published (with incre-

mented versioning) at h�p://hadatac.org/ont/chear/, and is used by

the HADatAc (Human Aware Data Acquisition Framework) system

as a basis for ingesting data from the CHEAR program for search,

discovery, and curation.

While our approach does not a�empt a one to one mapping of

ontology concepts to datasets, we a�empt to provide the ability

to compose descriptions of speci�c measurements, like “Mother’s

Pre-Pregnancy BMI” from concepts contained in the ontology. A

dataset could be annotated with a formal de�nition that uses OWL

property restrictions that compose into the a�ribute of interest.

For example, the OWL Manchester notation [10] for “Mother’s

Pre-Pregnancy BMI” (here encoded as a column called “MPPBMI”)

would be:

Class: MPPBMI
SubClassOf: chear:BMI,

sio:measuredAt only chear:PrePregnancy,
sio:isAttributeOf only (

sio:hasRole some (
chear:Mother and sio:inRelationTo only chear:Child
)

)

Similarly, chear:BMI is de�ned in terms of the a�ributes it uses,

and records the required unit of measure:

class: chear:BMI
SubClassOf: sio:Quantity,

prov:wasDerivedFrom some sio:Height,
prov:wasDerivedFrom some sio:Mass,
sio:hasUnit value uo:000086 # kg/mˆ2

�is allows us to be much more �exible in how we map data

from a given study into the CHEAR Ontology. Concentrating on

mapping many data sets to one single conceptual structure serves

the semantic web goal of interoperability: any dataset for which

the mapping is completed has a mapping to the SIO conceptualiza-

tion, and can be compared to any other dataset that has also been

mapped.

4 EVALUATION
We a�empted to annotate a new pilot study with the CHEAR on-

tology as a way to determine what the coverage of the current

version of the ontology was. Our epidemiologist created an initial

semantic version of a data dictionary with our lead ontology expert.

http://hadatac.org/ont/chear/


Figure 1: Ontology Development process for the CHEAR Ontology.

�e epidemiologist indicated where classes were missing from the

ontology and wrote suggested concepts and de�nitions.

�e annotated data dictionary was then curated by an ontology

expert to correct any mistakes, which were minimal, and to �nd

existing terms in our adopted ontologies only minor corrections

needed by an ontology expert. Of the 96 classes used to represent

the data, we needed to introduce 32 new classes, 16 of which were

in the study codebook, mapping enumerated values to a�ributes.

Additionally, of the 32 new classes, 11 of them mapped into existing

classes in the set of MIREOT ontologies.

We �nd this level of class introduction is acceptable for early

stage ontology development. �e new classes will be released in the

CHEAR Ontology version 0.9,
8
while the version of the ontology

used for analysis is version 0.8.
9

5 DISCUSSION
�e YAGNI principle has been a guiding force for prioritizing capa-

bilities in so�ware. As the name ”You aren’t gonna need it” implies,

this principle recommends incorporation of only essential function-

ality. While sometimes it can result in technical debt due to a lack

of foresight, when properly managed and paired with a long term

8
h�p://hadatac.org/ont/chear/0.9/

9
h�p://hadatac.org/ont/chear/0.8/

vision of how a work will grow, can result in powerful and relevant

so�ware. YAGNI can sometimes result in technical debt. How-

ever, vision does not need to immediately lead to implementation.

Maintaining a long-term vision of how the so�ware or ontology

will grow while only implementing what is immediately needed

helps keep scope and, as the vision’s elements become relevant,

also validates that vision.

Similarly, we found that when it was applied to ontology de-

velopment, YAGNI can quickly �nd the most relevant classes to

model, and when paired with a useful set of core ontologies, can

create a monotonic development process, minimizing the need to

change existing classes. �is approach of on-demand ontology ex-

tension has proven to us to be a scalable approach, since, as new

data comes in, fewer and fewer classes are needed. New classes

have �t easily within existing ones. One component with signif-

icant variability is the mention and encoding of education level

as granuarlity varies rather signi�cantly and education paths also

vary in di�erent countries, so not surprisingly, education level has

been encoded quite di�erently in some datasets. We did �nd that

we could leverage the general monotonicity of education - one gen-

erally completes previous grade levels before proceeding to more

advanced grades. �ere were some challenges around aligning

education levels and terminologies across countries. We found the



Figure 2: Representation of Familial Roles and Relations. Roles (Child, Subject, Mother, Head of Household) link entities
(Joe, Joe’s Mom, Joe’s Household) together via sio:hasRole and sio:inRelationTo. Household membership is indicated via
sio:hasMember.

combination of PROV-O, SIO, HAScO, and HASNetO to be a very

useful core ontology set for describing scienti�c data. In fact, we

found it to provide almost surprisingly good coverage for the types

of studies we have seen so far. Coverage of entities, roles, a�ributes,

samples, lab analysis variables, instruments, methods, and even

-omics data was straightforward to model.

5.1 Representation Considerations
�ere are a number of representations that might be common to

some data representation-driven ontologies, but are not used in the

CHEAR Ontology. �e term ”observation” has been used with a

range of meanings and it can be ambiguous and sometimes mis-

leading. Because we record a�ributes as rei�ed objects, they mostly

serve in the role that observation objects might, including time of

measurement, provenance of the a�ribute, unit of measure, and

other a�ributes. �is approach is consistent with the use of ontolo-

gies that a�empt to model the world as described, as opposed to

language-oriented ontologies, that a�empt to model the description

of the world.

We subscribe, for the purposes of this ontology, to Platonic real-

ism, where classes are allowed to be made that predict unobserved,

hypothetical instances in the world, or �ctional instances that are

marked as such. �is form of scienti�c realism, which SIO was de-

signed for, was laid out in [6]. We therefore borrow, at times from

ontologies that, in their details, align well with SIO, even if their

upper level ontologies do not follow quite the same philosophical

underpinnings.

One important consideration to make when using this approach

is to carefully pick the foundational ontologies that are used. When

dealing with ontologies that may have di�erent approaches to rep-

resentation, it may be necessary to select subtrees from an ontology

to use. If the ontology outright prohibits that approach by including

statements that lead to reasoning contradictions, it may be nec-

essary to take relevant subtrees, and, where allowed by license,

duplicate them with references to the source. For instance, if a

conceptual ontology, like SNOMED-CT [28], LOINC [20], or MeSH

[17] has a useful, consistent subtree that can be used in a realist

ontology, a 1:1 mapping can be made using SPARQL queries into an

ontology module. Each class can be related back to the originating

URI using a property from the Conceptual Model Ontology (CMO)

called hasPrimaryConcept [19]. CMO provides a generalized frame-

work for associating realist ontologies that focus on data models

with conceptual ontologies that are o�en used for coding or similar

applications. A�ribution can also be used by stating that the copy

prov:wasDerivedFrom the original version.



Figure 3: Time Interval Representation of Measurements. Most epidemiological attributes are measurements, here we show
Gestational Age at birth, length at birth, and mother’s BMI at birth. �ey are all related to the birth timepoint, measured in
days. �e mother’s attribute of education level, being a High School graduate, is shown without a timepoint.

Figure 4: Representation of Analyte Concentrations in relation to a Human Derived Urine Sample. Most of the biomarker
data in CHEAR is in the form of chemical analysis of elements and other analytes in blood, urine, and other sample types. We
identify the component parts of the sample (Lead, Cadmium), and give them concentrations in relation to the sample itself,
which was prov:wasDerivedFrom Joe.



Figure 5: Representation of Genomic, Transcriptomic and Epigenomic Data. Finally, we are able to represent a wide array
of genomic data using SIO’s genomics modeling capabilities. Joe has a mutation on his TERT gene at on chromosome 5 at
position 12993652, and that gene is part of a DNA region that has an extra copy on one chromosome. �e data was against a
Buccal Cell sample (o�en used for genomics analysis), derived from Joe.

We were also able to resolve di�erences in perspective between

domains. For instance, in epidemiology, the term “metals” refers

to any element that reacts biologically in the way that metals do.

�is therefore includes metalloids. We introduced a “metals an

metalloids” class, into the CHEAR ontology, and since it is familiar

to epidemiologists as “metals”, we gave it the URI chear:Metal. It is
not equivalent to CHEBI:33521 (metal atom), but instead has metals

and metalloids as subclasses. Additionally, we found it necessary

to provide high-level classes for a�ributes, entities, and processes

that relate to speci�c areas of interest within epidemiology. �ese

classes are parallel to, but have no bearing on, the subsumption

hierarchies of the domain-speci�c ontologies.

6 FUTUREWORK
We plan to build a much larger expansion of the CHEAR Ontology

by a�empting to model many key National Health and Nutrition

Examination Survey (NHANES) [25] data dictionaries, which cover

a number of epidemiological domains over many decades. NHANES

includes datasets pertaining to other categories that are of interest

to CHEAR research, including concepts related to dietary, labo-

ratory and examination measures. We also plan to incorporate

metabolite classes into the analyte hierarchy from the Reference

Metabolite (RefMet) database from Metabolomics workbench.
10
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Additional near term expansion areas for analytes include in�am-

mation and oxidative stress.

One future goal is to create Semantic Data Dictionaries for the

variables described in these datasets, in order to expand the range

of concepts included in the CHEAR Ontology. A Semantic Data

Dictionary will provide a formal means to map dataset columns into

a compositional structure like the ones used in our examples. It will

do so in a way that allows us to produce 1) OWL-based metadata

for those datasets, creating explicitly de�ned classes that dataset

columns map to, and 2) RDF data, or formal mappings of data to

RDF, for the actual data that is described by the data dictionary that

conforms to the OWL metadata we create. �ese Semantic Data

Dictionaries are an expansion of the mapping process we used on

the pilot data, and currently require human curation. For some

studies, like NHANES, tools for web scraping can be used, such

as the Python library Beautiful Soup [26], allowing for automatic

population of variable names, labels, and de�nitions. Nevertheless,

automating the population of entities, roles or relations that cor-

respond to the variable cannot be accomplished simply by using

web scraping techniques. �us, an additional research direction is

to leverage Natural Language Processing (NLP) methods to extract

potential semantic qualities of variables from their label and de-

scription. Further, in preliminary discussions, we have found that

it may be helpful to provide pre-populated starting points for the

most commonly used data. Domain experts could then customize

the mapping to their own studies. Further, we plan to produce a



number of Semantic Data Dictionaries to describe the data speci�-

cations that the CHEAR program is already developing for di�erent

kinds of laboratory analysis results, where appropriate.

7 CONCLUSIONS
We presented a new ontology for in tela integration of knowledge

and data in global health and exposure research, called the CHEAR

Ontology. We showed that it is possible and e�cient to apply on-

demand development approaches from agile so�ware development

(You Aren’t Going to Need It) to developing broad, interdisciplinary

ontologies. �is process was facilitated through web-based col-

laboration of researchers from multiple domains. We were able to

converge on a common data representation standard that covers the

most commonly used data within the CHEAR program, with clear

room for expansion to cover other types as they are needed. Using

this approach, we generated an ontology that is ready for reuse

that provides coverage in the areas of exposure and child health

and that is compatible with many of the most widely used best

practice ontologies and/or vocabularies in relevant areas. We are

actively seeking partners and users for the ontology and welcome

collaborators on the web-based semantic framework for on-demand

ontology evolution and maintenance environments.
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