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Abstract. Question answering systems users may find answers with-
out any supporting information insufficient for determining trust levels.
Once those question answering systems begin to rely on source informa-
tion that varies greatly in quality and depth, such as is typical in web
settings, users may trust answers even less. We address this problem by
augmenting answers with optional information about the sources that
were used in the answer generation process. In addition, we introduce a
trust infrastructure, IWTrust, which enables computations of trust val-
ues for answers from the Web. Users of IWTrust have access to sources
used in answer computation along with trust values for those source, thus
they are better able to judge answer trustworthiness. Our work builds
upon existing Inference Web components for representing and maintain-
ing proofs and proof related information justifying answers. It includes a
new TrustNet component for managing trust relations and for computing
trust values. This paper also introduces the Inference Web answer trust
computation algorithm and presents an example of its use for ranking
answers and justifications by trust.

1 Introduction

There is an increasing amount of information sources available to web applica-
tions. As information source breadth increases, so does the diversity in quality.
Users may find increasing challenges in evaluating the quality of web answers,
particularly in settings where answers are provided without any kind of justifica-
tion. One way our work improves a user’s ability to judge answers is by including
knowledge provenance information along with answers. Knowledge provenance
includes information about the origin of knowledge and a description of the rea-
soning processes used to produce the answers [20]. This paper describes our new
work expanding on our work on knowledge provenance, which allows justifica-
tions to include trust values with answers. The computation process takes into
account the user’s (stated or inferred) degree of belief in the sources, answering
engines, and in other users who provide sources and/or answering engines. Our
framework allows users to define and (locally) maintain individual trust values,
and use those values in their evaluation of answers from their own trust “view-
point”. They may also access the trust network to discover other user’s trust
values of answers and thus also use those values in their evaluation of answers.



In recent work, we have addressed the problem of improving user’s trust in
answers by providing information about how an answer was calculated [17]. That
work provides an infrastructure, called Inference Web (IW), which allows proofs
and proof fragments to be stored in a portable, distributed way on the web
by using the Proof Markup Language (PML) [19]. Proofs describe information
manipulation processes (i.e., information extraction, reasoning, etc.) used to an-
swer questions providing full support for tracking knowledge provenance related
to answers. In addition to PML, IW provides IWBase [16], which is a distributed
repository of knowledge provenance elements. Knowledge provenance elements
contain proof-related meta-information such as information about answering en-

gines, inference rules, representation languages, and sources such as ontologies
or documents. PML documents can represent answers varying from a single
database lookup operation to a derivation of complex answers in a distributed
fashion, involving multiple sources, and using distinct answering engines.

Knowledge provenance alone may not be enough for a user to evaluate how
much they should trust an answer. For example, a user may be unfamiliar with
a question answering component that was used to find (a part of) the answer. A
user may not know much about the question answering system (e.g. reasoning
method, correctness and completeness of the reasoner, reasoning assumptions,
etc.). Alternatively, a user may know something about the reasoner and would
normally expect to trust answers from the reasoner, but in the case where the
answer appears to be incomplete or conflict with a user’s expectations, a user
may need more information before he or she would trust the answer. Also, users
may trust a question answering system completely but if the system relies on
information from sources that the user does not trust, then the user may not
trust the answer. Additional considerations include situations where a source
is used that is unknown to the user but the source is known to be trusted by
another user (human or agent) that is trusted by the user.

In this paper we introduce an extension of IW, called IWTrust, which can
quantify users’ degree of trust in answers obtained from web applications and
services. IWTrust uses trust values between users as well as trust values between
users and provenance elements. Thus, IWTrust can store that Louise trusts her
friend Deborah’s knowledge of wine and food parings, and also trusts the US
Department of Agriculture’s food pyramid, and her favorite cook book’s descrip-
tions of recipes. Trust values of the answer can then be computed relative to a
particular user’s perspective. The final trust value for the answer uses both a
user’s trust value of the sources used in the answer as well as a user’s trust in
other user’s trust of sources used to obtain the answer. For example, Louise may
ask an agent to answer questions about food and wine pairings and she may
trust the answer more if it uses the sources with which she is familiar. She may
also trust the system if it uses sources known to be trusted by agents or people
she trusts. IWTrust also allows one to compute collective trust measures of (a
group of) users in some provenance element. These are expected to be used by
users for defining their (starting) trust values for provenance elements. Many
light users of IWTrust will never actually input many (or any) of their own per-



sonalized trust values, and instead rely on the aggregated trust from groups. In
the example setting, Louise may decide to trust the wine agent if it used sources
that a very large number of users trusted to a high degree.

The paper is organized as follows. Section 2 gives an overview of existing
trust management systems discussing trust issues important to the IWTrust
framework. Section 3 provides an abstract view of how trust components interact
with question answering components. Section 4 provides the details of our trust
model for IW. Section 5 describes three algorithms for computing trust values
using the IWTrust framework. Section 6 provides and example use of IWTrust
and the final section summarizes our work.

2 Related Work on Trust Management

Credibility and resource authentication (i.e., digital signatures, public keys) are
two major issues in trust management literature. Our work focuses on the cred-

ibility issue, which has been studied in the context of a few areas including
social networks (e.g., see [11]), general Semantic Web [15, 11], and Peer-to-Peer
computing [13, 1].

Generally, users do not “know” all other users in a trust network, and at
most, they will only define trust values w.r.t. a (small) subset of them. The
trust relationship is directional, i.e. the fact that user u1 trusts user u2 at some
level t does not necessarily mean that u2 trusts u1 at the same level. In reality,
u2 may trust u1 at a different level (including explicit distrust) or u2 may be
unaware of u1 and thus have unknown trust. Trust relationships between users
can be represented as a directed graph with weighted edges, where an edge from
node u1 to node u2 with weight t means that user u1 trusts user u2 at the level
of t. This is a restricted form of a trust graph where graph nodes (also called
resources) are users. In this paper we are interested in building and using trust
graphs where we can observe the following:

– the use of different kinds of resources including users (humans or agents
querying the web), sources, engines (answering queries), statements told by
one or more sources (also called told information), statements derived by
one or more engines.

– the paths from a user who asks a question to the answer. This path may
include sources and trust values (possibly by others) of those sources.

Our work uses trust graphs, and as a result infrastructure for creating and
maintaining trust graphs is discussed in this paper. Trust graphs use relations be-
tween resources and work on these relations exists in the literature. For example,
Despotovic and Aberer [5] distinguish trust among users as providers of trust-
worthy information and/or services from trust among users as recommenders of
(other) users providing trustworthy information and/or services; and from trust
among users as recommenders of (other) recommenders. Further, Matthew et
al. [15] introduce the notion of user’s belief in the accuracy, credibility and rel-
evance of a statement. Gil and Ratnakar [9] operate with the notions of sources



and statements (acquired from the sources), and associates them with one of the
six values from their appropriate scales.

Going back to traditional trust management systems, trust values between
users are used for the following:

1. trust-based routing of (search) requests in the network [15]

2. computing trust values between nodes that are not connected by a single
edge but are connected through a path of nodes in a trust graph [15, 10]

3. computing a “collective” trust value for a user as an aggregated measure of
trust values of a group of users [13, 1, 14]

4. detecting malicious users, who intentionally spread unauthentic information,
or inactive peers, who consume but do not contribute, and encouraging them
to contribute (e.g. [13, 14])

We know that some users may not provide authentic information about prove-
nance elements, they may intentionally mis-report their credibility level to other
users and/or provenance elements, and they may not provide provenance ele-
ment information that is useful to IW in answering questions. In this paper we
address issues (1) – (3) above and we do not address issue (4).

Trust values may be different and may be interpreted differently by alterna-
tive approaches. For instance, [10] and [1] define a binary scale for trust values,
namely, 0 (or, -1 in [10]) denotes an untrustworthy relation, and 1 denotes a
trustworthy relation. Golbeck et al. [11] defines nine levels of trust, defining a
specific meaning for each level (from most trusted to least trusted). Trust val-
ues may be defined in a continuous range [0,1] with probabilistic interpretation
[15, 13, 5]. Intuitively, a trust value t, for a user, means that the user has the
probability t of providing trustworthy information and/or services.

Computing estimated trust values for users, or, generally, for resources , is one
of the most essential issues addressed in the reputation systems literature. There
are two basic approaches: computing a collective trust value by aggregating trust
values for some particular user from all other users (e.g. [13]), or from a subset
(quorum) of other users [14, 1]; and computing an inferred (or personalized) trust
value for a user with respect to another user based on the trust values on the
path(s) in a trust graph from one user to another [15, 10]. Initial trust values for
potentially unknown users need to be defined. In this case, it is assumed that
there is no path in the trust graph between the users, and therefore an estimated
trust value can not be computed. The adoption of a collective trust value is an
approach for initial trust values (e.g., [14]).

3 Trust for Question Answering

In this section, we will describe a prototypical question answering environment
and discuss possible approaches for adding trust-based functionalities.



3.1 Question Answering Environments

In the Inference Web context, question answering engine is any kind of software
system providing services able to produce answers in response to queries. From
this general definition, answering engines can vary from retrieval-based services,
such as database management systems and search engines, to reasoning-based
services such as automated theorem provers.

We assume an environment where a user (a software system or a human be-
ing) interacts with a query front-end component1 formulating and asking a query
q to which the query front-end responds with a set of answers A2. In addition
to interacting with users, the query front-end is responsible for forwarding the
query q to the answering engine grouping answers from the answering engine
into a set of answers A, and forwarding A to the user. Optionally, the user may
provide the specification of a set S of information sources along with the query
to be used by the answering engine to retrieve information from sources. Also
optionally, the user may specify the answering engine(s), which is not further
discussed in this paper. On demand, answering engines may also provide N(A),
a set of justifications for answers in A. If justifications are provided with answers,
N(A) should have one or more justification for each answer ak in A.

Query languages for q vary accordingly to the kinds of answering engines
used in the environment. For example, q may be a SQL query if the answering
engine is a relational database management system or it can be an OWL-QL [7]
query if the answering engine is a hybrid automated reasoner such as JTP [8].
The set of justifications N(A) is represented in PML. The features of PML that
we use, and in fact that we claim are essential for trust applications include:

– Full support for tracking provenance information. Thus, trust relations can
be established between (told) information and their sources.

– Options for representing information manipulation traces at different digress
of formality and specificity. PML has been used to represent formal proofs
such as those defined in traditional proof-theory textbooks while simulta-
neously being used to represent extraction and text analytics processes [6]
exemplifying quite different levels of formality and specificity.

– Options for representing multiple justifications for an answer within a single
data-structure. Thus, alternative justifications, and consequently alternative
trust values, can be offered to users as they evaluate answers and their sup-
port.

3.2 A Trust Component for Question Answering

In general, trust components are responsible for computing trust values for re-
sources such as users, i.e., the degree of trust a given user gives to other users.

1 User interfaces of answering engines interacting directly with users can be considered
to be query front-ends for the engines.

2 In this paper, capital letters denote sets while corresponding lowercase letters denote
set members, i.e., ak is one answer in the set of answers A.



In a question answering environment, in addition to computing trust values for
users, we believe trust components should be able to compute trust values for
trust graph resources such as sources, told information, and derived information.
We will use a trust component for computing trust values for answers.

Fig. 1. Trust component in question answering systems

The computation of trust values for answers presented in Figure 1 provides a
scenario where the trust component tries to assign trust values to every (interme-
diate) conclusion cm during the question answering process. Trust is user-specific
information returned by the query front-end to users. Different users may trust
other users and sources differently. Thus, an user identification ui is required
along with the query q if the environment is expected to manipulate trust in-
formation. The algorithm for computing the trust value for a given ui and a
justification of a conclusion, T (ui, n(cm)), is described in Section 5. Trust values
for answers are computed on demand in the same way that justifications are
computed on demand. Thus, if positive answer trust values are required, the
answering engine should return answer justifications (step 3 in Figure 1), even
if justifications are not asked by the user. Indeed, justifications are required for
computing trust values for answers. From an answer and its justifications, the
trust component computes (using the underlying trust network) user’s trust val-
ues T (ui, n(ak)) for answer ak , which are returned to the query front-end (step
5). The query front-end consolidates available trust values for justifications of
answers in A into a single set T (ui, N(A))3. Finally, the query front-end returns
T (ui, N(A)) to the user (step 6). The handling of multiple trust values for a sin-
gle answer may be confusing for users. So, if a tool using IWTrust trust values
for answer decides to have one trust value for an answer then the tool can select
the highest trust value in the range to be the trust value for the answer.

4 IWTrust Framework

In this section we introduce the IWTrust framework, referred to in the rest of
the paper as IWTrust. Figure 2 shows IWTrust in action where a user u1, sub-
mits a query q and obtains a set of answers {a1, . . . , an} with their associated

3 T (ui, N(A)) is defined as {X | ∀ak ∈ A, T (ui, n(ak)) ∈ X}.



trust values {t11, t12 . . . , tn1, tn2, . . . }. The user is connected by trust relations to
provenance elements (sources and answering engines in the diagram) in the IW-
Base that are used in answering the query. The user, u1, is directly connected to
some of them such as e2. The user is connected to others such as s2, s3 through
other users (u4 in the TrustNet in this diagram). Provenance elements are con-
nected to told assertions in proofs by provenance relations. Finally, Figure 2
identifies proof fragments, queries, IWBase and TrustNet as IW components
supporting the trust graph as discussed in this section.

Fig. 2. IWTrust Framework

4.1 Proof Fragments and Queries

PML is used to build OWL documents representing proof fragments and queries.
PML NodeSet is the primary building block of proofs and is used to represent
information manipulation from queries to answers and from answers to sources.
PML Query is used to represent user queries. A PML query identifies the node
sets containing conclusions used in answering the query. Nevertheless, PML is an
ontology written in W3C’s OWL Semantic Web representation language [18] al-
lowing justifications to be exchanged between Semantic Web services and clients
using XML/RDF/OWL.

A node set n(c) represents a step in a proof whose conclusion c is justified by
a set of inference steps associated with the node set. PML adopts the term “node
set” since each instance of NodeSet can be viewed as a set of nodes gathered
from one or more proof trees having the same conclusion. The conclusion c
represents the expression concluded by the proof step. Every node set has one
conclusion which is the element in the trust network that requires a trust value.
Of particular interest for queries is when the conclusion of a node set is a query
answer (rather than an intermediate conclusion)

Each inference step of a node set represents an application of an inference
rule that justifies the node set’s conclusion. A node set can have any number
of inference steps, including none. The inference step’s antecedents, answering
engines, and sources are all important to the framework. The antecedents of
an inference step form a sequence of node sets each of whose conclusion is a



premise of the application of the inference step’s rule. The sequence can contain
any number of node sets including none. Each source of an inference step refers
to an entity representing original statements from which the conclusion was
obtained. An inference step can have any number of sources including none. An
inference step’s source supports the justification of the node set conclusion when
the step’s rule is a DirectAssertion.

4.2 Provenance Elements and the IWBase

Provenance is captured for objects that may be manipulated and shown in proofs.
In this paper, we limit our discussion of provenance elements that are important
for our trust work. A more detailed description of PML provenance elements is
available in [19] and they are formally specified in OWL4. A Source represents
an entity which is the source of the original data. A source can be either an
Organization, an AnsweringEngine, a Team, a Person or a CreatedSource. Cre-

atedSources can be Ontologies, Websites or, generally, Documents. Provenance
relations among sources are important during trust evaluation. For instance, a
person may belong to zero or more teams and/or organizations. This source is
important for trust since organization structure may provide information that
is useful in trust evaluation (e.g., “I trust that person because I trust the or-
ganization she belongs to”). Moreover, a user may trust a document more if
she trusts the author(s), publisher(s) and/or submitter(s) of the document. Cre-
ated sources serve as providers of statements, which are then used in the the
computation of answers to user queries.

4.3 TrustNet

TrustNet is a trust network. In this network, users may define trust values w.r.t.
other users, answering engines, and sources. In addition to these trust relations,
the TrustNet trust graph represents provenance relations between sources. An
edge in the graph may connect an authority source node to a created source
node, provided that the authority source is the author (publisher or submitter)
of the created source. Using the information in these edges, we can compute
trust for a created source based on the trust of the authority source that created
it. All edges in the graph are associated with two values: length and trust value.
Intuitively, the length of an edge represents the trust “distance” between the
origin (i.e., users or authority sources) and destination nodes.

Trust values are defined in the range [0,1], and are given a probabilistic
interpretation. Namely, a trust value means the probability of either:

1. A source contains relevant and correct information
2. An answering engine correctly applies rules to derive statements (as conclu-

sions of node sets)
3. A user provides a a reference to a source that meets the requirements from

1, and/or to an answering engine that meets the requirements from 2

4 http://iw.stanford.edu/2004/07/iw.owl



4. A user recommends other user(s) who can provide trustworthy references to
source(s) and/or to answering engine(s)

Edges connecting sources have length values equal to 0 and trust values equal
to 1. These values represent the connection between created sources and their
associated sources. All other edges have length 1 and may have an arbitrary trust
value, which is computed as follows: each statement, used in query answering,
and originated from some source, may be evaluated by the user either as correct
or as incorrect. Users aggregate this information, and define their trust value of
a source as the ratio of correct statements w.r.t. all evaluated statements from
the source. The general formula for computing trust values follows:

t =
tp∗np+nt

np+nt+nu
, where nt is the number of interactions evaluated as trust-

worthy; nu is the number of interactions evaluated as untrustworthy; tp is the
level of anticipated trust; and np is a hypothetical number of interactions. tp
predetermines the starting trust level of a user of a source, another user, or an
answering engine; and np defines the level of confidence of the user that tp is
correct – the higher np, the slower t changes its value, while “recording” actual
interactions of the user, from the value of tp. This approach is not absolutely
new, and used in a similar form, for instance in [22]

5 Answer Trust Computation Algorithm

The answer trust computation algorithm (ATCA) computes T (ui, n(a)), which
is a set of user ui’s trust values, one value for each justification extracted from
a node set n concluding a. An optional tmin minimum trust value may be used
for eliminating the use of sources trusted at a level below a minimum threshold.

ATCA is described in Algorithm 1. There, it first initializes a relation RT of
tuples following the format tr(no, nd, t, l). In a tr tuple, no is the origin node,
nd is the destination node, t is the trust value of no to nd, and l is the edge
length between no and nd. The trust value of no to nd, reachable by some path,
is computed by multiplying the trust values of all edges in the path. We call
the result of the computation, the path trust value; and we write tp to denote
the path trust value for path p (or alternatively tod to denote the trust value
of a path between nodes o and d). Also, we write lp to denote the length of p.
Path trust values have a straightforward probabilistic interpretation: if origin
node x trusts node y at the level of txy, i.e. the probability of that y provides
trustworthy information (reference to other node) according to x is txy; and node
y trusts destination node z at level tyz, then the probability of that z provides
trustworthy information according to x is txy ∗ tyz, which we consider to be the
trust value of x to z.

In algorithm 1, ATCA calls the provenance retrieval algorithm (line 2), which
returns S(a), a set of provenance elements associated with n(a). For a node
set n(a), a set of provenance elements S(a) can be retrieved by using a tree
search algorithm, i.e., depth-first search. The algorithm should traverse node set
inference steps, and from inference steps, traverse their antecedent nodes that



Algorithm 1 Answer Trust Computation

input: ui, n(a), (optional tmin); output: RT

1: RT ← ∅;
2: S(a)← provenanceRetrieval(n(a))
3: Ra ← trustPathComputation(ui, S(a), tmin);
4: J(a)← proof(n(a))
5: for all (jm ∈ J(a)) do

6: RT ← RT + answerTrustComposition(ui, jm, Ra, tmin);
7: end for

are also node sets. Thus, in the process of traversing all possible justifications
for a, the algorithm records sources including the answering engines associated
with each inference step reached in the search.

ATCA then calls the trust path computation algorithm (line 3) in order to
enumerate paths from ui to each provenance element in S(a) and consequently
to compute element’s t and l values. The trust path computation algorithm is
described in Section 5.1. Currently, for those provenance elements in S(a), for
which trust can not be computed, the user, likely after performing some analysis
of these provenance elements, sets her trust values manually with path length
of 1. Alternatively, the user may take a default value of trust for elements based
simply on a preset value or, in a future system, based on aggregated trust settings
for this or similar elements.

Trust values need to be computed for each proof jm of a rather than for a set
of justifications n(a). Therefore, a set of proofs J needs to be “extracted” from
n(a) by using the proof extraction algorithm described in Section 3.2 in [19]5(line
4). Finally, ATCA passes each node jm ∈ J to the answer trust composition

algorithm (line 6) that computes and adds an answer trust value to RT . The
answer trust composition algorithm is described in Section 5.2.

5.1 Trust Path Computation

We are not interested in paths from users to provenance elements of any possible
length, and restrict the length to some (small) number of edges (e.g. 5-6 edges).
There are two reasons for this. First, people tend not to trust another person
much if the only path they have between themselves and the other person goes
through a long chain of acquaintances, even if each link along the way has a
high level of trust. Second, it has been also shown that WWW exhibits that two
people in the world are separated on average by six acquaintances [2] as well as
random graphs in general [21].

There may be several paths between a user and a provenance element with
distinct path trust and length values. We address this issue by considering two
possible strategies for selecting paths: shortest path and highest trust. In the
shortest path approach the user chooses a path with the smallest number of
edges, giving a preference to a path with the highest trust value if there are

5 Each single justification from a conclusion c is called a “proof from c”.



several paths of equal length. In the highest trust approach the user chooses a
path with the highest trust value, giving a preference to the shortest path if
there are several paths with the same trust value.

Using the requirements above, we can now formalize the trust path com-
putation problem as follows: given a user ui, a provenance element pelement, a
maximum path length value pmax, a minimum trust value tmin, compute a path
p from ui to pelement, such that lp ≤ pmax, tp ≥ tmin, and:

– (a): lp ≤ lp′ for any path p′ 6= p, and tp ≥ tp′ if lp = lp′ (shortest path
strategy); or

– (b): tp ≥ tp′ for any path p′ 6= p, and lp ≤ lp′ if tp = tp′ (highest trust
strategy).

With this definition the trust path computation problem represents a path
computation problem [12]. This class of problems deals with the enumeration
of paths between two given nodes in a graph, and the computation of some
particular properties of these paths (or finding a path with certain properties).
A property of a path is a function of the labels assigned to the edges in the
path, and may be, for example, the summation or multiplication of the edge
weights, their maximum or minimum values, etc [3]. In particular, [3] proposes a
generalized version of the semi-naive algorithm [4] to compute transitive closure
of a relation in an iterative manner, producing at each iteration a set of new
transitively held relations.

We extend the semi-naive algorithm to include our requirements. The pseudo-
code of our algorithm is shown as Algorithm 2. Lines 2, 3, 4, 10 and 11 are the
core steps of the semi-naive algorithm, whereas line 9 is a step of the algorithm
extended to our needs. Particularly, at step 9 we compute a set of transitively
held trust relations where: the origin of a trust relation must be ui; resulting
trust value must be greater or equal than the minimal trust value (t1∗t2 ≥ tmin);
and the path length should be less or equal to the maximum path length ((l1 +
l2) ≤ pmax). The d1 = o2 condition in line 9 represents the join condition. By
introducing the o1 6= d2 condition, we avoid the computation of paths containing
loops.

Algorithm 2 works as follows. Ra represents the answer relation which is
initialized to the empty set at line 1. Rt is the initial set of trust tuples, Rf
is the transitive closure for Rt, and R∆ represents the set of new trust tuples
computed at each iteration. Both Rf and R∆ are initially set to be equal to Rt
(lines 2 and 3). At each iteration we remove from R∆ (line 6) and add to Ra (line
7) tuples containing answer information, i.e. trust values of ui to the provenance
elements in S(a) (line 5). S(a) contains only those provenance elements, which
are not directly connected with ui by an edge. Note, that the trust value check
at line 5 (t ≥ tmin) is only introduced for the first iteration tuples, as tuples in
all following iterations will already satisfy the requirement due to the identical
condition in line 9. Line 10 of the pseudo code removes from R∆ all trust tuples
which originally existed (in Rt) or were computed in previous iterations. In line
11 the distinct tuples are added to the transitive closure relation Rf .



Algorithm 2 Trust Path Computation

input: ui, S(a), Rt, tmin; output: Ra

1: Ra ← ∅
2: Rf ← Rt
3: R∆ ← Rt
4: while R∆ 6= ∅ do

5: for all (tr(o, d, t, l) ∈ R∆|o = ui, d ∈ S(a), t ≥ tmin) do

6: R∆ ← R∆ \ {tr}
7: Ra ← Ra ∪ {< ui, d, t, l >}
8: end for

9: R∆(o1, d2, t1 ∗ t2, l1 + l2)← R∆(o1, d1, t1, l1), Rt(o2, d2, t2, l2),
o1 = ui, d1 = o2, o1 6= d2, t1 ∗ t2 ≥ tmin, (l1 + l2) ≤ pmax

10: R∆ ← R∆ \Rf
11: Rf ← Rf ∪R∆
12: end while

As [3] points out, it is important to define a proper semantics for how tuples
with identical o and d values are treated in the union and difference operations
(as in lines 7 and 10 of our algorithm). We define the union and difference
semantics based on the path trust computation strategy. In the shortest path
approach, when the o and d values are identical for a set of tuples, we leave a
tuple with the smallest l value and drop the others. If two or more tuples have
equivalent l values, then the one with the highest t value is left. Analogously, in
the highest trust approach we leave a tuple with the highest trust value giving a
preference to the shortest path when trust values are equivalent. The algorithm
eventually terminates when no new tuples are produced (checked at line 4). At
this point, Ra contains all provenance elements from S(a) which are “reachable”
from ui given path length and trust constraints.

5.2 Answer Trust Composition

Starting from the last step in proof j concluding c and proceeding through the set
of antecedents C of the proof step deriving c (line 7 in Algorithm 3), the answer
trust composition computes tc and lc recursively. The answer trust composition
algorithm terminates when conclusions inside a proof have no antecedents (C =
∅). In this case, it is assumed an implicitly trust relation with value of 1.0 and of
length 1 between the conclusion and its source s and tc and lc for the resulting
tuple are inferred as the trust and the length for s (line 3).

For a conclusion c from a proof step with one or more antecedents, the
algorithm works as follows: it first computes a weighted average over tj for all
cj ∈ C, whereas the weights are inversely proportional to the path lengths of
nodes in C. Watv and wl are used to compute the answer weighted average trust
value.

By computing a trust value for the answering engine input as the ratio be-
tween watv and wl we are fully trusting the answering engine. However, we may



Algorithm 3 Trust Composition

input: ui, Ra, j; output: < ui, c, tc, lc >
note: c is the conclusion of proof j; s is the source of c, if any; e and C are
the engine and set of antecedents for the last step in j deriving c

1: if C = ∅ then

2: tc, lc ← Ra(ui, s);
3: else

4: watv, wl, length← 0;
5: for all cj ∈ C do

6: tj , lj ← trustCompositionAlgorithm(ui, cj , Ra, tmin);
7: watv ← watv + (tj/lj);
8: wl← wl + (1/lj);
9: length← total + lj ;
10: end for

11: te, le ← Ra(ui, e)
12: tc ← (watv/wl) ∗ te;
13: lc ← INT (length/|C|) + 1
14: end if

have reasons for not trusting an engine that much. For instance, the engine may
not be sound for some kind of questions. Thus, we “weigh” the input trust values
against path lengths as shorter paths are likely to be more “credible” than longer
ones. Then, we compute the trust value for tc, lc, by multiplying the weighted
average trust value (watv/wt) by te (line 13). We compute the path length to c
as the integer part of the average of all cj , incremented by 1 (line 14).

The interpretation of trust and path length values for answers is different
from the one for sources. The heuristics we use in the trust composition algorithm
do not allow us to give a probabilistic interpretation to the resulting trust value,
and we can not treat path length value as a number of acquaintances from the
user to the answer. Trust values should be treated on a relative basis. An answer
with higher trust value is more likely to be correct than an answer with lower
trust value.

6 Trusting Answers: An Example

IWTrust’s typical use of trust values is for comparison and ordering of answers.
We do not expect that typical users will be interested in looking at raw trust
values such as 0.234 but we do expect that they will be interested in knowing
that some answers were trusted more than others. In this section, we present
an example showing how trust values can be used to rank both answers and
justifications.

Figure 3 shows a proof tree supporting the answer to a question concerning
the type of Tony’s Specialty. This particular proof tree encodes information
justifying that Tony’s specialty is a shellfish dish. In this example, Source 2
states that TonysSpecialty is a CRAB dish and Source 1 states that type is



transitive (thus if a dish is of type crab and crab is a kind of shellfish, then
the dish is of type shellfish). Thus, using generalized modus ponens (GMP), the
proof concludes that TonysSpecialty has the type of all of the superclasses of
CRAB. Further, Source 2 and Source 3 state that SHELLFISH is a superclass
of CRAB. Thus, using GMP again, the proof concludes that TonysSpecialty is
a SHELLFISH dish. In the figure, the leaf nodes display their trust and path
length values and the non-leaf nodes display trust values of answering engines,
as well as computed trust and path length values.

Fig. 3. Trust Composition Algorithm: an example

The proof shows that the question has at least two answers: one that Tonys-
Specialty is a SHELLFISH dish, and also that it is a CRAB dish. The proof also
shows that the SHELLFISH answer has two justifications: one based on state-
ments from sources 1, 2 and 3; and the other based on statements from sources 1
and 2 only. The example is simple but a question may have multiple answers and
each answer may have multiple justifications when answering engines use the web
as a search space. PageRank “Relevance” has proved to be a useful technique
for ranking answers but we also expect trust to be a valuable ranking method. If
we rank answers by trust values in this example, we would present crab before
shellfish. However, if another source with trust level higher than Source 2 states
that TonysSpecialty is a SHELLFISH dish than the SHELLFISH answer may
appear first.

Trust rankings may be valuable for ranking of justifications and their com-
ponents. For instance, if the user asks for a list of sources for the SHELLFISH
answer, we may not include Source 3 since the justification based on Source 3
(t=0.55) has a trust value lower than the justification without it (t=0.60). How-
ever, a Source 4 also stating that SHELLFISH is a superclass of CRAB could
be listed if the Source 4’s trust value was high enough to make a justification
based on its statement higher than 0.60.

This example shows that our work provides additional methods for filtering
and ranking answers. In addition to ordering methods based on specificity of



answer or things like reverse links, we can also use trust of sources and trust in
answers for choosing presentation of answers and justification options.

7 Conclusions

In this paper, we have introduced IWTrust as a solution framework support-
ing trust in question answering environments. IWTrust leverages the Inference
Web infrastructure to provide explanations from a variety of question answering
environments ranging from retrieval-intensive systems, such as database manage-
ment systems and search engines, to reasoning-intensive systems such as theorem
provers. It then enhances these explanations with user-customized trust values,
which can then be used to determine trust of answers, sources, and answer jus-
tifications.

Our primary contributions are in two areas. First we provide an implemented
solution infrastructure that can provide explanations to a wide range of ques-
tion answering systems that has been integrated with a trust network. Second,
we provide a design and prototype of a trust network with trust functionalities
supporting trust computation in a distributed question answering environment
such as the web. While others have provided trust algebras previously, and im-
plemented explanation solutions exist for different types of question answering
paradigms, our work is the first we know of that addresses the wide range of
question answering systems with a trust integration and simultaneously pro-
vides an extensible architecture. Our primary contributions in the trust area
include our design in the TrustNet layer presented in Section 4.3 and the answer
trust computation algorithms presented in Section 5.

In summary, we have provided a proof-based solution for explanations en-
hanced with trust values that take into account user-context. The implemented
solution includes our extensible explanation infrastructure, Inference Web, en-
hanced with a trust network and our trust computation algorithms. The resulting
answers are filterable by trust and thus provide more ways for users to obtain
more reliable and explainable answers in distributed web settings.
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