

WebExplain: A UPML Extension to Support the Development of Explanations
on the Web for Knowledge-Based Systems

Vládia Pinheiro1, Vasco Furtado1, Paulo Pinheiro da Silva 2, Deborah L. McGuinness3
1 University of Fortaleza, Fortaleza, Ceará, Brazil

2University of Texas at El Paso, TX, USA
3 Knowledge Systems Laboratory, Stanford University, Stanford, CA, USA

Abstract— Knowledge-based systems (KBS) should be able to

explain their results to improve the understanding and credibility of
their answers by users. However, most KBS explanation
components cannot be easily reused by other applications, thus
increasing the effort of implementing KBSs with explanation
capabilities. In this paper we present WebExplain, an extension to
Unified Problem-Solving Method Description Language (UPML),
a KBS development framework. WebExplain is integrated with
UPML generic components and can be easily reused during the
development of other problem-solving methods and KBSs.
WebExplain uses the Inference Web for enabling proof and
explanation interoperability between distributed applications. We
exemplify our approach by describing WebExplain’s use in the
development of a problem-solving method and a KBS with
explanation capabilities.

1. INTRODUCTION
Problem-solving methods (PSMs) describe the reasoning
steps and the knowledge roles used during problem-solving
processes, regardless of the problem domains. PSMs can be
reused by many applications. For example, a single PSM
may be used to guide a knowledge acquisition process as
well as to describe the design of a knowledge-based system
[3].

KBS users need to understand the manner in which
solutions provided by a KBS were produced. They then need
explanations that describe the PSM flow and the inference
steps followed by the KBS in order to produce a result.
Despite the development of explanation components by
some knowledge engineering solutions (e.g., [1,2,15,17,18]),
no known component is able to explain answers from
general PSM implementations. Some KBS can generate
explanations based on generic tasks or meta-rules, but we
are unaware of any explanation approach that provides a
systematic way to generate explanations for PSM
implementations or that can be easily reused for the
development of other KBSs, thus reducing the effort of
implementing explanatory KBSs. This paper describes an
extension of the Unified Problem-Solving Method
Description Language (UPML) [4]—, a KBS development
framework, by providing a reusable component with

explanation capabilities for KBSs. This component, called
WebExplain, has two main characteristics: (i) It is integrated
with UPML generic components: PSM, Task and Ontologies
(i.e., Method Ontology and Task Ontology). In UPML, a
PSM, a Task and their ontologies can be reused in several
domains in order to develop several and different KBSs.
Hence, we are leveraging UPML and benefiting from the
reusability of the UPML infrastructure, thereby reducing the
cost of development for Explainable KBS; (ii) It generates
justifications for the KBS results in the Proof Markup
Language (PML) [11]. PML is the proof format of the
Inference Web (IW), an infrastructure for Web explanations
enabling applications to generate portable and distributed
explanations for any of their answers [8]. PML has an
OWL-DL encoding [10], and is thus compatible with
semantic web applications in XML, RDF, and OWL. It
includes content such as sources, inference rules, inference
steps, and conclusions. Thus, proofs in PML can be shared
with other distributed applications on the Web, besides
using the IW infrastructure and tools to abstract proofs into
explanations and to present them to users. KBSs are
increasingly being deployed in heterogeneous environments
such as the Web—for example, Web Services, and sharing
information with other applications. Hence, there is a need
for interoperable KBS responses and explanations, like
PML.

UPML-based KBS development makes reasoning
processes explicit by implementing PSM as part of the
applications. Thus, the capability of accessing PSMs at
execution time can be leveraged to explain PSM answers at
the reasoning level—the strategic level. With the help of
UPML patterns, one can enhance the quality of explanations
by abstracting away task-specific reasoning steps from
proofs and by keeping relevant information for response
understanding. Explanations about the domain knowledge
are generated from the KBS’s inference engine that chains
the domain rules.

We exemplify our approach by describing how to have
reusability in both the development of PSM and the
development of Explainable UPML-based KBS.

2. BACKGROUND KNOWLEDGE
Our approach for Explainable KBS integrates UPML and
the IW frameworks.

2.1. Inference Web
Inference Web (IW) [8,9] is a framework for explaining
reasoning tasks by storing, exchanging, combining,
abstracting, annotating, comparing, and rendering answer
justifications1 provided by reasoners embedded in
applications. IW justifications identify the KBS reasoning
steps used to derive answers from input information. In
addition to a language for answer justification, IW provides
an infrastructure that includes: an extensible web-based
registry containing details on information sources, reasoners,
languages, and rewrite rules; a justification abstractor, and
explanation browser. The browser is used to support
navigation and presentations of answer justifications. The
explainer is used to abstract machine-level justifications into
human-level explanations.

PML is the IW justification specification language and
includes two major components for building proof trees:
inference steps and node sets. A justification can then be
defined as a tree of inference steps explaining the process of
deriving answers, which are the final conclusions of a
justification. Node sets represent both the antecedents and
conclusions of inference steps. In other words, an inference
step is the application of a single inference rule over a set of
antecedents (encoded as node set conclusions) and deriving
a consequent (also encoded as a node set conclusion). Each
inference step contains pointers to the inference rule and
variable mappings used.

2.2. UPML
The UPML framework [4] supports KBS modeling from
reusable components, adapters, development guidelines, a
description language, and tools. Distinct KBS software
components are described by the UPML architecture:
• PSM component that defines the control structure responsible

for the coordination of subtasks, i.e., the definition of the
subtask execution order;

• Task component that defines the problem that should be
solved by the KBS. Subtasks executed by the PSM component
are also task components that implement the procedure in
order to solve one part of the overall problem. Normally, the
subtasks are implemented through an inference engine that
executes the rules of the domain’s knowledge base;

• Domain model component that describes the KBS domain
knowledge, such as, domain rules;

• Ontology component that provides the terminology used in
other UPML components including the Method ontology,
Task ontology, and Domain ontology.

• Bridge component that establishes the relationships between
two distinct UPML components. For example, the bridge
between a subtask and the Domain Model sends the domain’s

concepts and rules to be used in resolving the subtask. This
component allows the Task components and PSM component
to be implemented completely detached from the Domain
Model, and only receive the domain’s knowledge and
concepts at execution time.

1 The terms justification and proof are used interchangeably in this paper.

• Refiner component that specializes a UPML component for a
specific application.

UPML provides an approach to KBS development
strongly centered on the reuse of its generic components and
the use of ontologies. To resolve a knowledge intensive
problem, a KBS developer can identify and reuse a specific
PSM for a problem. The selected PSM must be already
defined and implemented using the UPML architecture’s
generic components: PSM, Task, and Ontology. The
developer is left with the task of defining the Domain Model
and the Domain Ontology. Moreover, the growing library of
generic UPML components eases the development of PSM
and KBS for other tasks. For example, Pinheiro, Furtado &
Furtado [12] describe a set of UPML generic components
implemented in Java including the abstract-and-match PSM
[16] used for KBS that solve assessment problems.

3. A UPML COMPONENT FOR KBS WEB
EXPLANATIONS

3.1. General Description
In this section we introduce WebExplain, a UPML
Explanation Component, responsible for generating PSM
and Tasks justifications in PML. WebExplain justifications
support two kinds of explanations: about the structure of the
reasoning process implemented by PSMs (strategic
explanations); and about the execution of subtasks, which
are executions of domain’s rules and concepts (domain
explanations).

Figure 1 shows how WebExplain interacts with the PSM
and Task components. Generally, WebExplain receives the
subtask that is to be executed from the PSM component and
associates all the inference steps generated from that point
up to this subtask. Associations between the PML node sets
and subtasks in justifications will ultimately determine the
PSM’s order of execution. WebExplain receives the rules
that have been fired from the Task component (subtasks).
Rules are provided along with their conditions and actions
and recorded as inference steps of each subtask. Note that
the justification generation process does not interact with the
Domain Model, i.e., the inference steps are received from
generic UPML components. For this reason, WebExplain is
domain-independent and can be reused by other
applications.

WebExplain is composed of the following classes:
• The ProofGeneration class that is used for building inference

steps from parameters received from the PSM and Task
components. These parameters are represented as variable
bindings in the justifications. This class is responsible for
encoding the current state of some of the PSM variables as
sentences in the justifications. PSM sentences are written in
the Knowledge Interchange Format (KIF).

• The Proof class represents a step in a justification. Inference
steps are recorded from ProofGeneration and are identified by
a conclusion and a set of antecedents. The conclusion of an
inference step can be either derived or asserted. If the
conclusion is derived, the class keeps information about the
inference engine and inference rule used to derive the
conclusion, e.g., JEOPS and modus ponens, and information
about the premises.. If the conclusion is asserted, the class
keeps information about the source, e.g. a domain ontology.
To identify the inference engine generating an inference step,
we have created a relationship between this class and its
subclasses, i.e., UPMLProof, JEOPSProof, JESSProof, etc. A
single justification generated by the ProofGeneration class can
represent inference steps generated by multiple inference
engines such as JEOPS [5] or JESS [7], as well as inference
steps generated by the PSM control structure.

• The IWHandler class is responsible for mapping justifications,
which are composed of Proof objects, into node sets and for
generating PML documents.

Fig. 1. The UPML original framew

It is important to point ou

represented in PML are explore
as Explainer and Browser.

3.2. WebExplain Represent
PSM justifications can be trans
each node set in the justifica
subtask wherefrom it was gen
holding the antecedents. M

identifies the order in which the subtasks were executed,
forming a proof tree that portrays the order defined in the
PSM.

Domain explanations are generated from the inference
steps associated with subtasks. For instance, a subtask can
be implemented by means of the inference engine that
executes rules of the domain’s knowledge base or by means
of an algorithm. We will call these two cases, respectively,
subtask implementation A and B. Due to the generality of
our approach. WebExplain should not present restrictions to
KBS developers regarding the inference engines that can be
used. Information referring to the conditions and actions of
each rule can be retrieved from a rule ontology without the
need for customizing a specific inference engine.

Figure 2 presents the classes that define the rules
ontology. The Rule class defines domain rules with the
name, description, rule-type, actions, and conditions slots.
The actions and condition of a rule are expressions of class
Expression defined by a name, description, expression-type,
domain-variable, operator, and value slots. The domain-
variable slot represents a concept of the domain manipulated
by an expression. This slot is of class Element, which is a
concept from the Domain Ontology. Instances of these
classes form the domain knowledge base, whose semantic
interpretation is defined by the ontology of the domain and
the conditional (conditions → actions).

UPML COMPONENTS

Tools like Protégé are widely used by the Knowledge
Engineering community for creating ontologies. Moreover,
tools of this category often possess plugins [14] that
generate ontologies in several formats including OWL, Jess,
and JEOPS. These capabilities offer two important
advantages for our solution: (i) since rules are instantiated
from the Rules ontology, they can be generated
automatically in the format that inference engines happen to
process; (ii) users of KBS or knowledge engineers can edit
and evolve the domain’s rules knowledge base, with no need
for knowledge of inference engine languages.

 ProofGeneration

Proof

Bridge

Bridge Bridge

Task PSM

Ontology

 Domain

WebExplain

PML docume
 IWHandler
ork extended with WebExplain.

t that the reasoning steps
d through IW services such

ation
lated into explanations since
tion is associated with the
erated and to the node sets
oreover, the justification

The process of generation of proofs steps executed by the
WebExplain is made up of the following steps:

1. It receives, from the subtask, the rule fired by inference
engine (subtask implementation A). This is possible
because every inference engine possesses a service,
generally called Listener, that informs the sequence rules
fired;

2. It executes a method of its ProofGeneration class that has
access to the rules ontology to retrieve information on the
conditions and action of the rule fired, as well as the
classes of the domain manipulated by the rule;

3. It executes a method of its ProofGeneration class that
inserts the steps of proof as objects of the Proof class based
upon the conditions and actions of the rule. For example,
let p be a wff (well-formed formula) that represents the set
of the rule’s conditions and let q be a wff that represents
the set of the rule’s actions. As the rule was fired, all of the
rule’s conditions were satisfied by facts r,s,t..., therefore
the truth-value of p is true. By the rules ontology, the
truth-value of (p → q) is true. Therefore, WebExplain can

nts

insert the proof steps q,r,s,t..., and (p → q) as Proof
objects. Proof step q represents a derived conclusion and is
generated with information on its antecedents r,s,t..., e (p
→ q), the ModusPonens inference rule used in its
deduction and the inference engine used.

4. It returns to Step 1 for the next rule fired, associating all of
the proof steps to the current subtask.

Fig. 2. Rule Ontology for WebExplain.

In the case where the subtask is implemented by means of

an algorithm (subtask implementation B), the
implementation of the algorithm must define the conditions
and actions for executing each reasoning step embedded in
subtask and the generation process is started from step 3,
described above.

The integration between WebExplain and the generic
UPML components—PSM and Task—is defined at the time
of implementing the PSM, therefore the effort is performed
only once, and is ready to be reused in the development of
several Explainable KBS.

4. USING WEBEXPLAIN AS SUPPORT TO
THE DEVELOPMENT OF EXPLAINABLE
KBS

We have two kinds of reuse in our approach: the reuse of the
WebExplain component in the modeling and implementation
of different PSM, and the reuse of these PSM in the
development of different KBS which implies, consequently,
the extensibility of the WebExplain to several KBS and in
its consolidation as a means of support to Explainable KBS
developers.

In this section, we exemplify our approach by describing
its use in the development of the abstract-and-match PSM,
for assessment tasks, and in the development of an
Explainable KBS—the ExpertCop System [6].
4.1. Using WebExplain in the Development of a
PSM
The abstract-and-match PSM is defined conceptually in
[16]. Its reasoning process defines a control structure
executing the following subtasks sequentially:

1. Abstract that simplifies the case data;
2. Specify that finds criteria relevant to the case data;
3. Select that selects one criterion for evaluation;
4. Evaluate that evaluates the select criterion with respect to

the case data;
5. Match that checks whether the criteria that were evaluated

lead to a decision. The select, evaluate, and match subtasks
are interactively executed for each criterion until a decision
can be found or the criteria set is exhausted.

Basically, the AbstractMatch java class implements the
PSM reasoning process through a control structure that is
responsible for sequencing the subtasks. This class extends
the PSMComponent class which contains generic methods
to perform the mapping with the other UPML components
and, among others, a method to execute the calls to
subtasks—executeSubTask method. In this method, the
integration with WebExplain was inserted calling a method
from the ProofGeneration class, which receives the subtask
that is to be executed. This integration ensures that the proof
tree to be generated in PML mirrors the reasoning structure
embedded in the PSM. At the end of the execution of
subtasks, the AbstractMatch class invokes the publish
method of the IWHandler class responsible for generating
PML documents corresponding to the proof tree.

The abstract-and-match PSM subtasks are implemented as
subclasses of the Java TaskComponent class and all possess
a method called execute, which contains the implementation
of the reasoning part destined to each one. In this method,
commands must be inserted for integration with
WebExplain: receive from inference engine each rule fired
and call a method of the ProofGeneration class to access the
rules ontology (subtask implementation A) or define the
conditions and actions for executing each reasoning step
(subtask implementation B); and insert the proof steps
corresponding to the execution of the rule as objects of the
Proof class. The Abstract, Evaluate and Match subtasks
were implemented by means of an inference engine and the
Specify and Select subtasks were implemented via
algorithm.

The abstract-and-match PSM also define the following
knowledge roles: case description, criteria to be evaluated,
abstraction rules, evaluation rules, and decision rules. These
knowledge roles were implemented as java classes
containing generic properties and methods to receive, as
parameters, the corresponding instances from classes from
the domain’s ontology and the rules ontology.

The development of a KBS for assessment tasks using the

UPML components in any domain can thus reuse the PSM
implementation, freeing developers for implementing only
domain-specific classes and for defining those domain-
specific knowledge roles.

4.2. Using WebExplain for Developing an
Explainable KBS
The ExpertCop System [6] is a UPML-based KBS example
performing an assessment task implemented by the abstract-
and-match PSM. In ExpertCop’s decision-making process, a
criminal cognitive agent must evaluate data gathered from a
geo-simulated environment using a set of criteria to decide
whether or not to commit a crime. This system is used to
teach police officers about when and where crimes are likely
to be committed.

The developers of the ExpertCop system reused the entire
implementation of the abstract-and-match PSM and its
integration with WebExplain. They only had to do the
domain ontology modeling and the domain rules as
subclasses of knowledge roles defined by the PSM: the case
description was modeled by the CrimeSituation class, the
criteria to be evaluated class was modeled as
CrimeCriterion, and the abstraction rules, evaluation rules,
and decision rules were modeled in the rules ontology that
defined rules of three types: abstraction, evaluation, and
decision. These rules are processed by the JEOPS inference
engine, and passed on as parameters, at execution time, to
the Abstract, Evaluate, and Match subtasks.

Let us take as an example the rule evaluateRiskHigh of
the evaluation type. This rule possesses the following
conditions:

• CrimeSituation.density > 10;
• CrimeSituation.policeDistance < 501;
• Risk.selected = true;
and the following action:
• Risk.truthValue = high
In Figure 3, the IW browser presents a justification, in

KIF, for the fact that valueRisk is high. The node sets were
generated by WebExplain from the execution of the rule
evaluateRiskHigh, which was chained by the subtask

evaluate. The fact “valueRisk high” is encoded in a PML
node set conclusion and each inference step in the node set
corresponds to a fact justification. When rendering the fact
justification, the browser shows that the answer, through an
application of the modus ponens inference rule, was inferred
from the following facts (that correspond to the rule
conditions):

• (policeDistance ?crimeSituation 300)
• (density ?crimeSituation 15)
• (selected ?risk true)
and the rule itself:
• (<= (valueRisk high)
 (and (density crimeSituation ?z) (> ?z 10)
 (policeDistance ?crimeSituation ?m) (< ?m 501)
 (selected ?risk true)))

Fig. 3. Nodesets generated by the WebExplain from the subtask evaluate communication about the execution of the rule
evaluateRiskHigh.

5. RELATED WORK
Explanations for KBS have appeared as a significant and
independent topic of study since MYCIN [1]. NEOMYCIN
[2] contributed to explanation research in KBS by using an
explicit representation for problem resolution strategies and
by using meta-rules in explanation planning. By using meta-
rules, NEOMYCIN separated the domain ontology from
MYCIN’s rules. This separation allowed NEOMYCIN to be
more usable as an explanation infrastructure; however it was
specific to MYCIN in terms of problem solving and domain
representation.

The use of Ripple Down Rules (RDR) [15] presents a new
paradigm for KBS in which cases are used to explain an
answer to a query. RDR provide only cases as representation
for explanation which is a domain-specific representation.
Moreover, RDR tools, like browsers, are specific for this
knowledge representation technique. Another aspect to point
out is that this approach was only used in classification
tasks. Therefore, it is not trivial to extend it to other
knowledge tasks such as design.

WOZ [17] is a framework for explaining component-
based decision-support systems. The framework is
composed of functional components that represent the
reasoning process, the associated cooperative visualization

agents responsible for explanation presentation and user
interaction, and application domain models such as user
model, agent model, and explanation strategy. WOZ
incorporates some of the major trends in software
engineering including explicit models, multi-agent
architectures, and visualizations. However, WOZ is not
easily scalable, since a new explanation strategy must be
developed for each application.

Similar to our approach is the Explanation Expert System
(EES) [18] framework that provides explanations about the
manners the KBS used the PSM in a certain domain. As our
approach does, its Explanation Generator component
provides clarifications when its explanations are not
understood. The major difference is that we use a web-based
infra-structure for explanation which could be useful in the
development of problem solvers in general (web services,
agents, etc.). Moreover, this infra-structure benefits of
portability. It can be shared with other applications and
opens the possibility to cooperative explanations.

6. CONCLUSION
In this paper, we address the issue that KBS need
explanation components and that we are not aware of any
that provide a systematic way to generate explanations of
PSM implementations or that can be easily reused for the
development of other applications, thus reducing the
implementation effort of the explainable KBS. So, we
propose an extension of the UPML framework by providing
a reusable explanation component—WebExplain.
WebExplain is integrated to the UPML generic components:
PSM and Task. Hence, we are leveraging UPML facilities as
reuse and ontologies. WebExplain provides proofs from the
reasoning process embedded in the PSM and subtasks,
which serve as a basis for explanations about the reasoning
structure and explanations about the domain’s knowledge.
Another characteristic of WebExplain is the use of PML for
dumping proofs, therefore enabling proof and explanation
interoperability between distributed applications.

We exemplify our approach in the development of a PSM:
how should the integration between WebExplain and
generic UPML components be implemented. We identified
three points of easy integration. This effort was performed
only once and the PSM, integrated to WebExplain, can be
reused, freeing Explainable KBS developers from the worry
of having to implement only domain-specific classes.

Future works aim at projecting some pragmatic principles
of linguistic interactions onto the semantic structures of the
PML proofs in order to select the information to be
conveyed to users, to simplify proof steps and to reorganize
proofs, in order to improve the quality of the explanations.

REFERENCES
[1] B. Buchanan and E. Shortliffe. Rule based expert systems: The

MYCIN experiments of the Stanford Heuristic Programming Project,
Addison-Wesley, Reading, MA, 1984.

[2] W. Clancey. From GUIDON to NEOMYCIN and HERACLES in
Twenty Short Lessons: ORN Final Report 1979-1985, AI Magazine,
7(3), pp. 40-60, 1986.

[3] D. Fensel and V.R. Benjamins. Key Issues for Automated Problem-
Solving Methods Reuse. 13th European Conference on Artificial
Intelligence, ECAI98, Wiley & Sons Pub., 1998.

[4] D. Fensel et al. The Unified Problem-Solving Method Development
Language UPML. Knowledge and Information Systems, An
International Journal, 5, 83-127, 2003.

[5] C. Figueira Filho and G. Ramalho. Jeops – The Java Embedded Object
Production System. IBERAMIA-SBIA 2000. LNAI 1952, Berlin:
Springer-Verlag, 2000.

[6] V. Furtado and E. Vasconcelos. A Multi-Agent System to Teach
Police Allocation. Proc. of 17th Innovative Application of Artificial
Intelligence (IAAI-2005), Pittsburgh, 2005.

[7] JESS. http://herzberg.ca.sandia.gov/jess, as available on March 10th,
2006.

[8] D.L. McGuinness and P. Pinheiro da Silva. Infrastructure for Web
Explanations. In Proceedings of 2nd International Semantic Web
Conference (ISWC2003), D. Fensel, K. Sycara and J. Mylopoulos
(Eds.), LNCS 2870, Sanibel Is., FL, USA. Springer, pages 113-129,
October 2003.

[9] D.L. McGuinness and P. Pinheiro da Silva. Explaining Answers from
the Semantic Web: The Inference Web Approach. Journal of Web
Semantics. Vol.1 No.4., pages 397-413, October 2004.

[10] D.L. McGuinness and F. van Harmelen. OWL Web Ontology
Language Overview. W3C Recommendation, February, 2004.

[11] P. Pinheiro da Silva, D.L. McGuinness and R. Fikes. A Proof Markup
Language for Semantic Web Services. Information Systems, Volume
31, Issues 4-5, June-July 2006, Pages 381-395. Also, Stanford KSL
Technical Report KSL-04-01.

[12] V. Pinheiro, E. Furtado and V. Furtado. A Unified Architecture to
Develop Interactive Knowledge Based Systems. In proceedings of the
17th Brazilian Symposium of Artificial Intelligence (SBIA 2004),
Bazzan, Ana L.C. e Labidi, S. (Eds), LNAI 3171, São Luís, MA,
Brazil, Springer-Verlag, pp 174-183, 2004.

[13] Protégé: http://protege.stanford.edu, as available on March 10th, 2006.
[14] Protégé Plug-ins: http://protege.stanford.edu/download/plugins.html,

as available on March 10th, 2006.
[15] D. Richards. User-Centred and Driven Knowledge-Based Systems for

Clinical Support Using Ripple Down Rules. Proceedings of the 33rd
Hawaii International Conference on System Sciences, 2000.

[16] G. Schreiber, H. Akkermans, A. Anjewierden, R. Hoog, N. Shadbolt,
W. van de Velde and B. Wielinga. Knowledge Engineering and
Management: The CommonKADS Methodology. The MIT Press.
Cambridge, MA, 2000.

[17] R.D. Shankar, S.W. TU, M.A. Musen. A Declarative Explanation
Framework That Uses A Collection Of Visualization Agents. Stanford
Medical Institute, Stanford University School of Medicine, Stanford,
CA, 1998.

[18] W. Swartout, C. Paris and J. Moore. Explanations in Knowledge
Systems: Design for Explainable Expert Systems. IEEE Expert:
Intelligent Systems and Their Applications, vol. 06, no. 3, pp. 58-64,
Jun., 1991.

	INTRODUCTION
	BACKGROUND KNOWLEDGE
	A UPML Component for KBS Web Explanations
	USING WEBEXPLAIN AS SUPPORT TO THE DEVELOPMENT OF EXPLAINABL
	RELATED WORK
	CONCLUSION

