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Abstract

The Unified Modeling Language (UML) is a popular visual language for object-oriented mod-
elling of software systems. Despite this popularity, the use of UML to support the development of
software systems is challenging for many reasons such as its lack of a formal semantics. As a result,
the interpretation of models required to carry out the implementation of a software system may be
performed in different and contradictory ways. There have been many attempts to develop a formal
semantics for UML. However, most of these formalise some group of constructors of UML responsible
for modelling either structural or behavioural aspects of the software systems. Indeed, most of the
previous work seem to face some difficulties specifying all the models of UML using a single formal
notation. The Language Of Temporal Ordering Specification (LOTOS) is a formal specification
language that provides operators for specifying structural and behavioural aspects of software sys-
tems. Thus, this paper describes a function that maps UML constructors into LOTOS specifications.
Typical model checking of activity diagrams identifying deadlocks, livelocks and unreachable states
is achieved using available LOTOS tools to verify the generated LOTOS specifications. Further,
the identification of semantic problems related to complex relationships between class and activity
diagrams, e.g., creation and destruction of inter-dependent objects, is also achieved, verifying the
generated specifications.

1 Introduction

UML [4] is widely used for object-oriented modelling of software systems. Further, UML is an official
standard that benefits from the endorsement of the Object Management Group (OMG) [27]. The
popularity of UML has indicated that the language may be suitable for describing software systems at
an unprescribed though relevant extent. Moreover, in the same way as there are many reports describing
successful uses of UML for modelling systems, there are many reports identifying difficulties in the use of
UML for modelling, for example, interactive systems [31] and real-time systems [36]. The lack of a formal
semantics is another identified difficulty related to the use of UML [5, 7, 8, 24]. Indeed, this lack of a
formal semantics indicates the possibility of ambiguous interpretations of UML models. For instance, it
indicates that people using UML may have different and contradictory interpretations of a same set of
models. This may lead to disputes over the interpretation of the models, and over the implementation
of systems that do not fulfill the intentions of the designers. A formal semantics for UML could solve
this problem of contradictory interpretations of UML models. Further, such a semantics could be useful
for implementing automated verification of models to identify incorrect uses of the notation, as well
automated interpretation of models to generate software code.

The question of how best to provide a formal description of the semantics of UML is still open.
For example, a specification of UML in terms of a mathematical notation or a formal specification
language could provide a semantics for UML. The expressiveness gap between UML and a mathematical
notation may be bigger than between UML and a formal specification language. Indeed, the semantics
of specification languages are often provided by their mathematical specifications. Thus, the approach
in this paper is based on the use of a formal specification language. Such a specification language should
be powerful enough to specify the behavioural and structural aspects that can be described by UML
models. In fact, UML is composed of a set of diagrams that mainly describe behavioural (also called
dynamic) characteristics of software systems, e.g., sequence and activity diagrams, and a set of diagrams
that mainly describe structural (also called static) characteristics of software systems, e.g., class and
deployment diagrams. Most formal specification languages provide facilities for modelling and verifying
behavioural and structural aspects of software systems. Some formal specification languages, e.g., Z [37],
are appropriate while describing structural aspects of software systems. However, it may be difficult to
check some behavioural properties such as concurrency of their specifications since these languages do
not describe any computation that explains how their specifications can be executed [10]. A combination
of specification languages could be considered, e.g., Z [37], CCS [25] and CSP [14]. However, it would
be most desirable to use just one specification language to provide the required formalism.

In this paper, a LOTOS [3, 16] approach for specifying the semantics of UML is presented. LO-
TOS is a specification language that has succeeded in the challenging task of describing structural and



behavioural aspects of software systems using a single notation. Indeed, LOTOS has incorporated the
specification facilities of CCS and CSP, as well the facilities for specifying the abstract data types of
ACT-ONE [6]. Moreover, LOTOS is an International Standardization Organization (ISO) standard
specification language developed for the formal description of the Open System Interconnection (OSI)
architecture that is applicable to distributed, concurrent systems in general. Thus, through a case study
it is described how LOTOS can be used to specify a semantics for representative class and activity
diagram constructors. Furthermore, object flows described in this paper and used in activity diagrams
provide a connection between structural models, e.g., class diagrams, and behavioural models, e.g.,
activity diagrams without object flows.

The reading of this paper may flow in a straightforward way for readers that have familiarity with
(i) the specification of the UML metamodel as described in [27], and (ii) the LOTOS notation [16].
An introductory section on the LOTOS notation along with some explanations concerning the UML
metamodel presented throughout the paper try to overcome the requirements (i) and (ii) above. Thus,
this paper is structured as follows. Section 2 presents an insight about the current work on specifying
a semantics for UML. Section 3 provides a brief introduction to LOTOS. This section can be skipped
by readers familiar with LOTQOS. Section 4 describes the modelling of a software system using UML.
Section 5 introduces the ® function that translates UML models into LOTOS specifications, building
on the UML metamodel. The UML model introduced in Section 4 exemplifies the use of ® to generate
LOTOS specifications. Section 6 describes the & function for some structural constructors of UML.
Section 7 describes the @ function for some behavioural constructors of UML. Section 8 describes the
use of a LOTOS verification tool to analyse the LOTOS specification produced from the UML models
introduced in Section 4. Conclusions are presented in Section 9.

2 Related Work

The efforts to provide a formal semantics for the UML can be classified in many ways. In this paper,
related work is presented emphasising the existing dichotomy between approaches formalising structural
and behavioural aspects of the UML.

There are many approaches to formalising structural aspects of UML. Evans et al. [7] is an example
of one of the two approaches of the precise UML group [38] of researchers concerned about the lack
of a semantics for UML. In this approach, a semantics for UML is expected to be achieved by the
formalisation of some class diagram constructors used to build the UML metamodel, as described in [27].
Therefore, the semantics of the other constructors of UML can follow from the previously formalised
constructors, specifying in this way a semantics for the entire UML. Particularly in Evans et al. [7], Z [37]
is used to formalise the class diagram. In Evans and Kent [8], the use of set theory embedded in Object
Constraint Language (OCL) [40] constraints is used to provide a semantics for the generalisation and
package concepts. The Action Semantics proposal originated by Mellor et al.[24] also aims to achieve a
formalisation of the OCL. Further, Richters and Gogolla [33] have proposed a formalisation of the OCL in
an integrated way with some constructors of class diagrams. [8, 33] are examples of the second approach
of the precise UML group where a semantics for UML is expected to be achieved by the formalisation
of the OCL.

There is much work on formalising behavioural aspects of UML. The first mention in this context
should probably be of David Harel’s work which has influenced the development of the UML [11].
Considering this, we can say that the Harel et al. [13] and Harel and Naamad’s [12] descriptions of
the statechart semantics are partial descriptions of the semantics of UML. There are other results on a
formalisation of the behavioural aspects of UML. For instance, one of the final aims of having a formal
specification is the possibility of verifying if a model is correct. Latella et al. [21] and Lilius and Paltor [22]
present robust work that describes how statecharts can be verified. Both of them are based on the use
of the SPIN model checker [15]. Moreover, Latella et al. [21] indicates several points where the informal
specification of UML is silent in terms of a proper specification.

There is a concern about this dichotomy between the distinct formalisation of the structural and
dynamical aspects of UML. Wang et al. [39] describes a formalisation of the dynamic models of the



OMT [35]. This work is considered in this paper since the OMT is one of the three major predecessors of
the UML, and its formalisation is based in LOTOS. More recently, Breu et al. [5] have proposed another
use of mathematical models, denoted system models, to describe most of the constructors of UML. It looks
like a promising approach for a mathematically-grounded semantics for UML. The approach, however,
is currently a long way from being complete enough to provide a verification facility for UML. This
dichotomy between the formalisation strategies of the dynamic and structural parts of UML models may
be a problem for a complete verification of UML models. Keeping the semantics tractable at a certain
level, as described in Latella et al. [21], may be an appropriate strategy for the verification of UML
models. However, dynamic and structural models are interdependent, and as such they might be verified
at once.

This paper has been motivated in particular by the lack of semantics and even notation for mod-
elling interactive systems using UML [20, 30], and the formal specifications of interactive systems using
LOTOS [28, 23] has provided a strong motivation for the proposal described here.

3 A Brief Introduction to LOTOS

3.1 Basic LOTOS

A system S can be specified by a LOTOS process that might be composed of other LOTOS processes.
A LOTOS process P[G] has a set of observable gates G = {g1,92,...,9n}. LOTOS assumes that an
environment associated with the process P exists that is composed of the process P, its subprocesses,
and an unspecified observer process that is always ready to observe anything the system S may do. Thus,
a LOTOS action can be defined as the interaction between a defined process and, at least, the observer
process. The behaviour of a process is defined by an algebraic expression composed of: actions that may
be observed at the gates (unary operators); internal actions that cannot be observed at any gate (nullary
operators); and of other processes that specify their own algebraic expressions (composed operators). All
these operators are connected by binary operators, as presented in Table 1. These algebraic expressions
are called behaviour expressions.

<process funchonality > <process instantiaton®
“Process - process MAX3[inl, in2, in3, out] : Pexit :=
definition= hide md ino
<behaviour — (MAXZ[inl, inZ2, mid]|[mid]| [MAX2 [mid,in3 ,out])}
eEpression> where
process MAXZ[a, b, o] 1=
CLrOCEess
definition= (a: b: c; exit
(]
<behawiour
b: a: c; exit
eXpression™ kE )\i
endproc
endproc

<behawiour expressions®

Figure 1: Definition of a LOTOS process extracted from [3].

Figure 1 shows an example of a LOTOS process definition. There, the MAX3 process is defined that
has MAX2 as a subprocess. The observable gates of MAX3 are inl, in2, in3 and out, and the observable
gates of MAX2 are a, b and c. The behaviour of MAX3 is defined by the behaviour of the two instances of
the MAX2 process that are synchronised on the mid gate, as specified by the interleaving binary operation
(IN) connecting the two instantiations of MAX2. Further, an operation that is expected to terminate has



[ Category ] Operator [ Notation | Description

The expression a; C means that the process behaves like C after the

Action prefix ; K
execution of a.

The expression C >> D means that the process D is enabled if, and

Enabling >> only if, C' terminates successfully.

The expression a; C[|b; D means that the process can start to behave like
either C or D depending on the next actions provided by the interaction
Choice 1 of the current process with its environment. If the environment offers an
action a then the process starts to behave like C. If the environment
offers an action b, then the process starts to behave like D.

Binary Interleavin I The expression C|||D means that the actions of the processes C and D
Operators g do not need to synchronise (completely independent).
Interleaving if a is an observable action in both C and D processes, then the
with synchroni- In expression C|[a]|D means that C and D must synchronise in order to
sation gates perform a.
The expression hide z in C means that the action z originally specified
Hiding hide ... in | as observable by any other process interacting with the current process
at the gate z now can only be observable from the process C.
The expression C[> D means that the process C can be interrupted any
Disablin [> time before its successful termination in the case that the environment
g provides an unspecified interrupting action called a disabling operator.
In this case, the process starts to behave like D.
Unary This operator, which offers no event to the environment, means that the
stop stop . .
Operators process becomes inactive.

This operator offers an special event to the environment notifying the
exit exit successful termination of the process. After raising this special event, the
process also becomes inactive as a result of the stop operator.

Table 1: Binary and especial unary operators of LOTOS. It is assumed that a and b are LOTOS
observable actions and that C' and D are LOTOS processes in the descriptions.

the exit functionality, as in the MAX3 process specification. Otherwise, the process can have a noexit
functionality. As a LOTOS convention, action names are written in lowercase letters and process names
are written in uppercase letters. To facilitate the reading of this paper, words in bold fonts are reserved
words of LOTOS.

3.2 Full LOTOS

The LOTOS presented so far is basic LOTOS, since only behavioural aspects can be specified. The
specification of observable actions, however, can be refined with the use of abstract data structures and
values. Thus, the abstract data type specification language ACT-ONE [6] has been integrated with
LOTOS, specifying full LOTOS. New interprocess communications can be achieved in full LOTOS.

e Value passing: Suppose that the processes C and D are synchronised on the gate z, e.g. C|[z]|D.
Moreover, suppose that the process C' is performing z!TRUE and the process D is performing
z7b :Bool. We can say that C' is passing the value TRU E to the process D. Moreover, this TRUE
value is assigned to the b variable of the process D.



e Signal matching: Once again, suppose C|[z]|D. This time, suppose that C' is performing z!z; and
D is performing x!z5. This means that C' and D will only be synchronised if the values of 2z; and
29 become the same (21 = 23).

The type of the b variable in the value passing example is Bool (that means, Boolean). Full LOTOS,
or just LOTOS, provides a set of primitive types for modelling simple data structures. For instance,
the LOTOS primitive nat denotes a type the domain of which must be a natural number. LOTOS
also provides the ability to specify more complex data structures composed of primitive types and other
complex data structures. For example, the PERSON type definition presented as follows describes a
type that might be used by objects of a class PERSON.

type PERSON is String
sorts Person

opns mk_Person: —> Person
mk_Person2: String, String —> Person
setname: Person, String —> Person
getname: Person —> String
setcode : Person, String —> Person
getcode: Person —> String

eqns forall namel, name2, codel, code2: String
ofsort String
getname (mk_Person2(namel, codel))
getcode (mk_Person2(namel, codel))
ofsort Person
setname (mk_Person2(name2, code2 ), namel)
setcode (mk_Person2(name2, code2 ), codel)

mk_Person2(namel, code2 );
mk_Person2(name2, codel );
endtype

Figure 2: Person type specification.

The PERSON in Figure 2 is a type specification. The String after the is indicates that PERSON incor-
porates the specification of the String type. If required, other type specifications could be incorporated
along with the String type. Further, the eqns operator indicates equations used to specify constraints
relating intrinsic operations. Equations can be complex since they can specify complex constraints. How-
ever, only a set of simple equations required to provide meaningful type specifications as those presented
in Figure 2 are considered in this paper. Table 2 provides a brief explanation of the type operators in
Figure 2.

[ Operator | Description |

sorts Specifies data carriers of a type.

opns Specifies the intrinsic operations that can be performed over variables of a type.

eqns Begins the specification of equations where constraints relating intrinsic
operations are specified.

forall Declared under an eqns operator, it specifies free variables used in equations.

ofsort Declared under an eqns operator, it specifies the outermost operation in its
following equations.

Table 2: Some type operators of LOTOS.

Thus, for a given variable aPerson of the type Person, for example, the operation getname (aPerson)
returns a value of type String that is stored in Person. From the definition of getname (aPerson) it
is possible to identify the declarative nature of LOTOS. The specification of the getname() operation
specifies what is wanted rather than how the value can be retrieved from aPerson. Two special operations
are considered in the type specifications presented in this paper. In the case of the type Person, the
mk_Person operation is a default constructor that does not require any parameter to create a value of
type Person. The mk Person2 operation is also a constructor, but one that requires the constituent
values (attributes) of Person to create a composite value of type Person. Therefore, using mk Person2,
it is possible to see in Figure 2 that, for example, the getname() operations can be used to get an
attribute of type String from Person, and the setname () operation can be used store a String value



as an attribute in Person. The String type is presented as a reserved word in Figure 2 since it is a
primitive type of LOTOS.

The LOTOS processes in this paper are built in an incremental way and using mainly the basic
constructors of LOTOS. Thus, it may be expected that readers without prior experience of LOTOS can
understand the LOTOS notation from the description of LOTOS presented in this section. Nevertheless,
Bolognese and Brinksma [3] is a suggested introductory paper on LOTOS.

4 A Case Study

A Library case study is used to exemplify how UML models can be translated into LOTOS specifications.
The design introduced in this section is just one of the many possible results of the modelling of a Library
System. Further, the set of models presented in this paper is a subset of the models described in [31].
Moreover, in this paper, we are focusing on the meaning of the presented set of UML models rather than
on how UML models can be built. A model of process concerns for this case study is provided in [30].
Actors in the Library System are Librarians and Borrowers. The Library System must guarantee that
only registered users can log into the system. Further, the system must guarantee that borrowers can
only perform services associated with borrowers, and that librarians can only perform services associated
with librarians. This is achieved by the connect Activity in the top-level activity diagram of the Library
System in Figure 3. This paper presents the part of the Library System design that specifies the services
for the Librarians. Librarians use the Library System to manage the book catalogue and the loan records.
Librarians need mainly to inform the Library System when books are borrowed, the borrowBook Activity,
and returned, the returnBook Activity. Additionally, the due date in loan records can extend using the
renewLoan Activity. The relationship between these identified activities is also presented by the top-
level activity diagram in Figure 3. There, borrowBook, renewlLoan and returnBook are subactivities
of the SelectFunction Activity. Moreover, createMainUI and mui.selectService() are ActionStates
responsible for the instantiation and use of the mui:MainUI object flow, respectively. The mui Object is
actually the main user interface where librarians can select which services they want to perform.

' ™

SelectFunction

L createhManTJT

mui:MainUT |
mui.sel ectServicer) o)
[borrowB ook] [tetrnFook]
i[renewL 0]
borrowBookj [renewLoan] [returnBook.
A A

Figure 3: A top activity diagram for the Library System.

Activities can be refined into less abstract Activities and ActionStates. For instance, connect, borrowBook,
renewLoan and returnBook can be refined since they are Activities. However, createMainUI cannot be
refined since it is an ActionState. Figure 4 presents a refinement of the renewLoan Activity of Figure 3.
The renewLoan Activity is composed of the createRenewUI, ui.getBookCopy() and bc.renewLoan()
ActionStates. Additionally, the activity diagram in Figure 4 specifies the ui:RenewUI and bc:BookCopy
object flows that are modelled using ObjectFlowStates, rendered as dashed arrows, and ClassifierInStates,
rendered as boxes. These object flows provide an integration between the structural part of the Library



System, as described by the class diagram in Figure 5, and the behavioural part of the Library System,
as described by the activity diagrams presented in Figures 3 and 4.

-
renewLoan

ui.getBookCopy() f
J/ # be:BookCopy ‘
()< be.renewLoan() =

Figure 4: A refinement of the renewLoan activity.

The structural specification of the Library System is described by the class diagram shown in Figure 5.
This class diagram is composed of the classes Person, Librarian, Borrower, Book, Loan, BookCopy,
Reservation, ConnectUI, MainUI, RenewUI and ReturnedCopy. The first three classes correspond to
the LibrarySystemUser, Librarian and Borrower Actors, respectively. A Person has a name, an
identification code in the system and a password used to connect to the system. The Librarian Class
is a specialisation of Person which has the salary Attribute in addition to the Attributes inherited from
Person. The Borrower Class is another specialisation of Person which can borrow books from the library.
In this case, instances of Borrower should be associated to instances of Loan.

Person
name : string <<houndary == =<houndary ==
code @ string ConnectlUl Renewl|
password . string
Book <:<bnurjdary>> getBookCopy()
Z> authar : string MainUI
title : string
year : integer zelactService()
Librarian Borrower bookStatus()
galary © integer describes | 1
1] hasLoan «| hasCopy Reservation
BookCopy natifyBaorrower])
status . enum Signals
Code : stri ReturnedCo
borrowedBy | * Fopy-0de - ting Py
Laan 1 anLoan rbenEWLBDanE
dueDate - date| hasBookCopy rent:_,rru:\éuuuioo _______ <:<:send>> <<Signal=>
getCopyCode() ReturnedCopy
setCopyCode() copyCope : string
getStatus()
setStatus)

Figure 5: A class diagram for the Library System.

The existence of an instance of Book means that the book has an entry in the library catalogue.
To manage its stock, the Library System has a BookCopy class that represents copies of the books the
library has. An instance of Loan is created in the borrowBook Activity and destroyed in the returnBook
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Figure 6: Packages of the UML metamodel. The dashed arrows are dependencies indicating, for example,
that at least one class of the Core Package depends on a specification of a class of the DataTypes Package.

Activity. A Loan Object records the date the book should be returned. ConnectUI, MainUI and RenewUI
are Classes that describe the structure of the user interface of the Library System. These user interface
Classes have the < boundary> stereotype, as proposed by Jacobson et al. [17]. The ReturnedCopy Signals
are raised by the invocation of the returnBook method of BookCopy. These ReturnedCopy Signals are
received by an instance of the Reservation Class that notifies Borrowers with book reservations.

5 From UML Models to LOTOS Specifications

A semantics for UML models can be provided by LOTOS specifications generated from these UML mod-
els. Starting in this section, we explain how UML models can be translated into LOTOS specifications.

5.1 UML Metamodel

UML has been revised several times since the elaboration of its first proposal submitted to the OMG in
1997 [19]. A description of the structural aspects of the UML diagrams is an outcome of these revisions.
This description is called the UML metamodel, as it is partially composed of UML class diagrams. The
complete specification of the UML metamodel is described in the “UML Semantics” chapter in [27],
which is organised by the Packages that compose the UML metamodel. Figure 6 presents the UML
Packages which are partially organised by both the participation of the metaclasses in the UML diagrams
and the dependencies among the metaclasses. Thus, from Figure 6 we can observe that most of the
metaclasses of the class diagram are specified in the Core Package within the Foundation Package, where
the structural constructors of UML are specified. Metaclasses of dynamic (or behavioural) diagrams
are specified in Packages of the BehavioralElements. Therefore, the metaclasses of the collaboration
and sequence diagrams are specified in the Collaborations Package. The metaclasses of the use case
diagram are specified in the UseCases Packages. The metaclasses of the state diagram are specified in the



StateMachines Package. The metaclasses of the activity diagram are specified in the ActivityGraphs
Package.

For each Package, the documentation provides three informal and complementary descriptions of
the metamodel: the abstract syntazx, well-formedness rules and modelling element semantics. The class
diagrams, that can properly be called the UML metamodel, are part of the abstract syntax. An example
of part of one of these class diagrams of the abstract syntax is presented in Figure 7. There, the
State constructor specified in the StateMachines Package is a State if used in a statechart, or is an
Activity if used in an activity diagram. In both diagrams a State can be connected to another State or
to a PseudoState by a Transition. PseudoState and Transition are also specified in the StateMachines
Package. The abstract syntax also provides a description in prose of each element that composes the UML
metamodel. The well-formedness rules are written in OCL. These rules provide additional constraints
concerning the Classes of the abstract syntax that cannot be expressed using just the class diagram
constructors. These well-formedness rules are also supported by textual descriptions of their meaning.
The semantics of a modelling element is a description, once again in prose, about the meaning of the
Package itself.

context ModelElement

0.1 Z;
| |

StateMachine | g top | StateVerex

0.1 1 ! o~
Z> Z% 1 target Incarming

ActivityGraph

A State associated
to an ActiityGraph | — —  State i PseudoState _
is an Activity kind : Pseudostatekind

Figure 7: Partial representation of the State Machines and Activity Graphs packages of the UML
metamodel.

behavior

+

source outgoing [, sition

A UML Constructor is a Class in a class diagram of the abstract syntax of the UML specification.
In this document, the names of UML constructors are exactly as specified in [27]. Additionally, the
UML constructor names are printed using a sans serif font in order to facilitate their identification for
readers not familiar with the UML metamodel terminology. For example, the ModelElement, StateVertex,
Transition, State and PseudoStates Classes presented in Figure 7 are UML constructors.

The UML metamodel is important since it plays a key role in the development of many UML
tools. In fact, the UML metamodel has facilitated the implementation of, e.g., Rational Rose [32] and
ARGO/UML [34], for modelling, handling and sharing UML models. However, the UML metamodel
aims to be a framework for describing a UML semantics, not only a facility for implementing tools.
However, the metamodel basically relies on the use of the English language to describe the meaning of
its constructors.

5.2 Mapping Strategy

The strategy of this LOTOS-based proposal for a UML semantics follows the core meta-modelling strat-
egy described in [8]. Basically, the idea is to provide an initial semantics for some UML constructors
considered essential for modelling most UML diagrams. The semantics specified for these constructors
can then be used as a framework for specifying a semantics for the other constructors. For example, a
formalisation for Class might be required in order to formalise Package. The following definitions are
required to explain how a semantics for such UML constructors can be specified.



LOTOS has a context-free grammar. According to [1], a context-free grammar has a set of terminal
symbols; a set of non-terminal symbols; a set of productions where each production is composed of a
non-terminal symbol, an arrow, and a sequence of terminals and/or non-terminals; and a designation
of one of the non-terminals as the start symbol. Thus, a non-terminal symbol of LOTOS is a LOTOS
constructor. Assuming that U is a UML constructor and that £ is a LOTOS constructor, a semantics
for UML can be provided by the LOTOS semantics contained in the specification generated through
the use of ®(U/) = L. The ® function is specified through the definition of UML constructor definitions
(UCDs), which are definitions of UML constructors in terms of sets of at least one LOTOS constructor.

From this UCD we can see that our approach conforms with the official UML approach. In fact, we
are respecting the UML specification in the sense that we are neither modifying nor removing any element
of UML. Moreover, we are using the UML specification as a foundation for the proposed semantics for
UML.

A basic understanding of the UML metamodel may be required to understand some ¢ mappings in
the following sections. Conducting a detailed reading of the “UML Semantics” in [27] is heavy going,
but, to the best of our knowledge, it is the unique description of the entire UML metamodel.

5.3 Basic Mappings from UML to LOTOS

From this point in the paper we start to introduce a set of 28 UCDs which composes the foundation
of a strategy to map UML models into LOTOS specifications. Although limited, this set of mappings
indicates that their underlying strategy can be extended to incorporate the other elements of UML not
described in this paper.

A system S can be modelled from a top-level activity diagram, for example, as shown in Figure 3.
The Activities in this top-level activity diagram can be recursively decomposed into less abstract Activities
and ActionStates connected by Transitions and PseudoStates. The decomposition of the top-level activity
diagram is considered complete when the Activities are entirely described in terms of ActionStates, which
are the “leaves” of the tree of Activities. Thus, the UML Activity constructor can be specified as follows.

UCD 1 An Activity that has subactivities Sub;..Subx is defined by a LOTOS process definition specified
as follows.

process ACTIVITY ACT[abort] (...) : exit :=
<final_activity_behaviour >
where
process SUB; ACT : exit (...) :=

endproc
process SUBx ACT : exit (...) :=

endproc
endproc

The <final_activity_behaviour> in the ACTIVITY_ACT process above is a text defined by a BNF
grammar specified as follows.

<final_activity_behaviour > ::=
<activity_behaviour > ‘‘[> abort; exit’’
<activity-behaviour > ::= <activity > |
<activity_behaviour > <operation> <activity >
<activity > 1= <action_state_imp > | <activity_imp>
<action_state_imp > ::= <CALL.SEND_ACTIONSTATE> |
<CREATE ACTIONSTATE>
<activity_imp > ::= <LOTOS PROCESS>
<operation > ::= CC[]77 | “YU|177 | f>>
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In the grammar above: <CALL SEND_ACTIONSTATE> is a non-terminal specified in UCD 28;
<CREATE_ACTIONSTATE> is a non-terminal specified in UCD 24; and <LOTOS PROCESS> is the
specification of a LOTOS process instantiation.

Hereafter, underlined words in UCDs represent placeholders which vary according to the instance of
the UML constructor represented by the UCD. For example, for an Activity named SelectFunction the
ACTIVITY _ACT in UCD 1 is replaced to SELECTFUNCTION_ACT.

From UCD 1 we can see that the processes of the subactivities, which can be ActionStates, are
defined as subprocesses of the ACTIVITY process. Nevertheless, reuse [18] can be achieved in LOTOS
specifications of UML models by defining Activities and ActionStates in common higher-level Activities of
the Activities that share the same functionality. Still in UCD 1, ACTIVITY_ACT has a standard abort
gate which is responsible for finishing the process. The abort gate allows any process synchronised
to it to finish the ACTIVITY_ACT process at any time. Thus, such a gate may be useful for handling
abnormal situations such as a premature destruction of an Object or an error message from the operating
system.

To conform with the LOTOS specification, an additional UCD should be specified for top-level
activities.

UCD 2 For a top-level Activity, the process and endproc terminators and the first appearance of
the := terminator in UCD 1 are replaced by the specification, endspec and behaviour terminators
respectively.

ActionStates and Classes should also be translated into LOTOS specifications in order to describe S as
a LOTOS process. In fact, ActionStates specify the Objects where Actions are performed, and Objects are
specified by their Classes. Classes can be specified in term of LOTOS processes, as explained in Section 6.
Actions can be specified in terms of LOTOS process as explained in Section 7. However, there are two
mapping techniques between U and £, which we are calling foundation mappings, that are required to
explain the mappings described in Sections 6 and 7. The first foundation mapping technique explains
how the connections provided by Transitions and PseudoStates in activity and statechart diagrams can
be translated into binary operators of LOTOS. In fact, the binary operators of LOTOS are used to
compose the behaviour expressions of processes. The second foundation mapping technique explains
how types, implicitly specified by Classes in UML, can be specified by LOTOS primitive types and type
specifications.

Concerning the behaviour of S, a translation of interaction diagrams, viz. sequence and collaboration
diagrams, into LOTOS specifications is not described in this paper. Indeed, despite the fact that inter-
action diagrams may be more useful for developers using UML than activity and statechart diagrams, we
can observe that interaction diagrams are partial representations of activity and statechart diagrams [29].
Nevertheless, the semantics provided in this paper for constructors used in both activity and statechart
diagrams can be used for specifying a semantics for constructors used to build interaction diagrams.

Transitions and Pseudo-States

Activity and statechart diagrams are composed of instances of StateVertex connected by instances of
Transition. Recalling Figure 7, PseudoState and State are subclasses of StateVertex. Further, Branch, Fork,
Join, InitialState and FinalState are categories of PseudoState. Thus, a specification of Transition, Branch,
Fork, Join, InitialState and FinalState in terms of LOTOS operators provides the foundation required to
map UML models describing behavioral aspects of software systems into LOTOS specifications.

Let A, B, C and D be Activities and a and b be States. Table 3 presents the mapping of Transition,
Fork, Join, Branch, InitialState and FinalState into LOTOS behavioural expressions. There, a State that
can only be reached once within its immediate superstate is defined as as non-visited State. Otherwise it
is defined as a wvisited State. The mapping of a visited State into LOTOS expressions requires a recursive
invocation of the generated LOTOS process, as described by the UCD 6 in Table 3.

The LOTOS specification in Figure 8 for the top-level activity diagram in Figure 3 is produced using
the UCDs already presented. The activity diagram itself is mapped as the LIBRARY_ACT specification
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UCD u dU) [ a generic example |
UML [ LOTOS |

Transition between two n
3 non-PseudoStates to a action prefix abh
non-visited State in a p ’

statechart diagram

4 non-PseudoStates to a enablin
non-visited State in an g

activity diagram

A>>B

Transition between two

Transition to or from a

5 PseudoState going to or considered as

coming from a part of the o o
non-visited State PseudoState
A >> REC_ACT
where
6 Transition from a Branch recursive process REC_ACT[abort]:
to a visited State process exit :=
B >> (C [] [B]JREC_ACT)
endproc
7 Branch choice A >> (B[J[C]C) >> D

interleave with

8 Fork and Join A >> (B|||C) >> D

parenthesis
9 InitialState not mapped —
10 FinalState not mapped —

Table 3: UCDs related to Transition, Branch, Fork, Join, InitialState and FinalState constructors.

(UCD 2). Then, a navigation through the activity diagram should be performed. The navigation starts
at the InitialState, which is not mapped into the behaviour expression of LIBRARY_ACT (UCD 9). Fol-
lowing the Transition leaving the InitialState, which is also not mapped in LIBRARY_ACT (UCD 5), the
connect Activity is reached, which is mapped as the CONNECT_ACT process (UCD 1). The Transition
leaning the connect Activity, mapped as >> (UCD 4), reaches the SelectFunction Activity, mapped
as SELECTFUNCTION_ACT (UCD 1). Finally, following the Transition leaving the SelectFunction
Activity, which is not mapped in LIBRARY_ACT (UCD 5), a FinalState is reached, which is also not
mapped in LIBRARY_ACT (UCD 10).

To facilitate the identification of the roles that LOTOS processes are playing in the specification
of UML constructors, process names are suffixed by “_ACT” if the processes are modelling Activities,
by “_AS” if they are modelling ActionStates, and by “_CLS” if they are modelling Classifiers or their
subclasses, i.e., Classes and Interfaces.

The mapping process should go into the activities. For instance, Figure 9 presents a refinement for
the SELECTFUNCTION _ACT process introduced in Figure 8. The behaviour expression of SELECT-
FUNCTION_ACT process was created by traversing the SelectFunction Activity, and using the UCD’s
mapping in the same way as described for LIBRARY _ACT.
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specification LIBRARY_ACT[abort] : exit
behaviour
CONNECT-ACT[ abort ] >> SELECTFUNCTION_ACT[ abort ]
[> abort; exit
where
process CONNECTACT[ abort ] : exit :=
(* CONNECT-ACT specification x)
endproc
process SELECTFUNCTION_ACT[ abort] := exit :=
(x SELECTFUNCTION-ACT specification x)
endproc
endspec
Figure 8: The LOTOS specification of the Library Activity.
process SELECTFUNCTION_ACT[ abort | : exit

CREATEMAINUI_ACT[ abort ] >> DOSELECTION_ACT] abort ]
[> abort; exit
where
process DOSELECTIONACT[ abort] : exit :=
SELECTSERVICE_AS[ abort ] >>
( ( [ borrowbook |BORROWBOOKACT[ abort ] >> DOSELECTION_ACT][ abort | )

( [ renewloan ] RENEWLOANACIT[ abort ] >> DO_SELECTIONACT][ abort] )

( [ returnbook ]RETURNBOOK ACT[ abort] >> DO_SELECTION_ACT[ abort] ) )
[> abort; exit
endproc
(x CREATEMAINUIACT, SELECTSERVICE_AS, BORROWBOOKACT,
RENEWLOANACT and RETURNBOOKACT specifications %)
endproc

Figure 9: A refinement of the SELECTFUNCTION_ACT process introduced in Figure 8.

Type Mappings

Both UML and LOTOS provide a set of primitive types and allow the specification of complex types from
these primitive types. Primitive types in UML are specified by the constructors in the UML DataType
package. Primitive types in LOTOS are provided along with the specification of LOTOS. Complex types
in UML are specified by the specification of Classes, where their Attributes can be primitive types, defined
in terms of elements of DataType, or other Classes. In the same way, complex types in LOTOS can be
specified by a type specification, as introduced in Section 3. Further, these type specifications can be
composed of primitive types or other complex types.

There is almost a complete match between the primitive types of UML and LOTOS. For example,
Boolean matches with Bool, and Integer matches with nat. Few primitive types of UML do not match
with any primitive type of LOTOS. In this case, we can use a LOTOS specification type to define these
non-matching types. For example, Enumerate can map to a LOTOS type definition as in Figure 10.
There, a element can be retrieved from the enumeration using the getnext operation. In fact, element
is a parameterised sorts specified by the formalsorts operator, and getnext is a parameterised opns
specified by the formalopns operator.

Further, the Enumerate type can be used as the Enumerate to specify different enumerations. For
instance, the ENUMERATE_BOOKCOPY type definition in Figure 11 can be specified from the BOOK-
COPY type definition. The actualizedby and using operators define that BOOKCOPY should pro-
vide the parameters specified in Figure 10. Then, the sortnames and for operators specify that
BookCopy is the value for the element sort parameter. The opnames and for operators specify that
the nextBookCopy is the value for the getnext operation parameter.

Doing these type mappings as presented here, a complete translation of the types specified by Classes
into LOTOS type specifications can be achieved.
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type ENUMERATE is
formalsorts element
formalopns getnext: —> element
sorts Enumerate
opns hasnext: —> Bool

endtype

Figure 10: Enumerate type specification.

type ENUMERATEBOOKCOPY is
Enumerate actualizedby BOOKCOPY using
sortnames BookCopy for element
opnames nextBookCopy for getnext
endtype

Figure 11: Specification of EnumerateBookCopy from the Enumerate type.

6 A Semantics for Some Structural Aspects of UML

6.1 The Classifier Constructor

An informal definition of Classifier may be appropriate for readers not familiar with the UML metamodel
terminology. Class is a common term when modelling and implementing object-oriented software systems.
In terms of the UML metamodel, however, it is common to use Classifier rather than Class in certain
circumstances. In fact, Classifier is the constructor that has StructuralFeatures such as Attributes, and
BehavioralFeatures such as Operations. Class is a specialisation of Classifier that specifies that it can be
instantiated into an Object. The main reason for the distinction between Class and Classifier is that there
are other constructors that are Classifiers other than Class such as the Interface constructor.

Considering that Class is the major constructor for specifying structural aspects of software systems
in UML, and that the Classifier is a generalisation of Class, a UML constructor definition for Classi-
fier can provide a semantics for many structural aspects of UML. In this section, the features of the
BookCopy Class in Figure 5 are gradually translated into LOTOS in order to introduce a generic LOTOS
specification for Class, Classifier, and their related constructors.

6.2 A First Specification of Classifier

Classifier is frequently used as a type specification in UML since it plays the type role several times in the
UML metamodel. In fact, a Classifier is an implicit definition of type in the UML context. In LOTOS,
types are explicitly declared. The BookCopy class in Figure 5 has the attributes status and copyCode.
Thus, a BookCopy type can be specified as in Figure 12. This means that BookCopy is the type of the
BookCopy class.

type BOOKCOPY is enum, String
sorts BookCopy
opns mk_BookCopy : —> BookCopy
mk_BookCopy2: enum, String —> BookCopy
setstatus : BookCopy, enum —> BookCopy
getstatus : BookCopy —> enum
setcopycode: BookCopy, String —> BookCopy
getcopycode: BookCopy —> String
(x eqns specification )
endtype

Figure 12: BookCopy type specification.
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A Classifier can specify behaviour in addition to the type specification, as indicated by the BOOK-
COPY_CLS process in Figure 13. There, the copyCode attribute of BookCopy is defined as a pair of
low-level operations defined in the type definition, viz., setcopycode and getcopycode, that are used by
a pair of observable actions, viz., cci and cco, to update and retrieve the current value of the attribute.
Moreover, the BOOKCOPY_CLS process specifies that the attributes of the BookCopy’s instance are
ready to be updated, e.g., cci?’new_cc : String, or retrieved, e.g., ccolgetcopycod(bc), while the process
is active. The same strategy is used to specify the status attribute of BookCopy.

lprocess BOOKCOPY.CLS[si, so, cci, cco, destroy_-bookcopy ](bc:BookCopy) :
exit :=
( si?new_status:enum;
BOOKCOPY_CLS[ si , so, cci, cco, destroy_-bookcopy]
(setstatus (bc, new_status )) ]
so! getstatus (bc);
BOOKCOPY_CLS] si ,
(be)
cci 7Tnew_cc: String;
BOOKCOPY_CLS[ si , so, cci, cco, destroy-bookcopy]
(setcopycode (bc, new_cc)) [1
cco! getcopycode(bc);
BOOKCOPY_CLS[ si , so, cci, cco, destroy-bookcopy]
(bc) )
[> destroy_bookcopy ; exit
endproc

so, cci, cco, destroy_bookcopy]

Figure 13: Specification of Attributes in the BookCopy process.

A generic Classifier type and process can be defined from the BOOKCOPY type and BOOKCOPY _CLS
process examples.

UCD 11 A Classifier is defined by the specification of a LOTOS type definition and a LOTOS process
definition. The type definition is specified as follows.
type CLASS is
sorts Class
opns mk_class —> Class
endtype

The process definition is specified as follows.

process CLASS CLS[destroy_class] (c¢: Class) : exit :=
i; CLASS CLS
(x this internal action i represents
a class with an underspecified behaviour x)
[> destroy._class; exit
endproc

The destroy_class gate in UCD 11 corresponds to the abort gate of ACTIVITY_ACT in the context
of Classifiers. One distinct role is that the destroy_class action associated to the destroy_class gate
is the LOTOS constructor used to specifyDestroyActions as discussed in Section 7.4.

Hereafter, the CLASS and CLASS_CLS names denote the generic type and process definitions, re-
spectively, of a Classifier. Complete specifications of CLASS and CLASS_CLS are eventually presented
in Section 6.7. Considering CLASS and CLASS_CLS, it is possible to define the mappings for Object,
Class and Attribute.

UCD 12 An Object is a LOTOS process variable of the CLASS type and is used by the CLASS_CLS
process.

UCD 13 A Class is a Classifier that can be used by a CreateAction ActionState (UCD 24) to specify
Objects in LOTOS processes.
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UCD 14 An Attribute Attr of type AttrType is specified by a pair of type operations in CLASS, e.g.,
setAttr and getAttr, and a pair of observable actions, e.g., attri and attro, in CLASS_CLS. The
CLASS type with an Attr attribute is specified as follows:
type CLASS is AttrType
sorts Class

opns mk_Class: —> Class
mk_Class2: AttrType —> Class
set Attr: Class, AttrType —> Class
get Attr: Class —> AttrType
(* eqns specs *)
endtype

The CLASS_CLS process with an Attr attribute is specified as follows:

process CLASS CLS[attri, attro, destroy.class]
(c: Class) : exit :=
(attri ?new_attr: AttrType;
CLASS CLS[attri, attro, destroy_class]
(set Attr(c,new_attr)) []
attro! get Attr ();
CLASS CLS[attri, attro, destroy_class](c) ) []
. ) [> destroy.class; exit
endproc

The pair consisting of the BOOKCOPY type and the BOOKCOPY _CLS processes provide an in-
complete specification of the BookCopy Class in Figure 5. For instance, the Operations of BookCopy are
not specified in Figure 13.

6.3 Operation Specification

In addition to the attributes, the BookCopy class has seven Operations, as described in Figure 5. A
LOTOS specification for the renewLoan() and getCopyCode() Operations is presented in this section.
The renewLoan () Operation implements a functionality of the Library System, as described in Section 4.
Rather than implementing Library System functionalities, the getCopyCode () Operation is responsible
for encapsulating the copyCode Attribute.

An explanation of how the renewLoan() and getCopyCode() Operations can be specified in LOTOS
indicates how Classifier’s Operations can be specified in LOTOS. Each Operation is associated with a
CallAction, which is composed of a pair of Messages. The Message and CallAction and Operation
constructors are defined in terms of LOTOS operators as follows:

UCD 15 A Message is the specification of an observable action of CLASS_CLS in the behaviour expres-
sion of CLASS_CLS or any of its subprocesses.

UCD 16 A CallAction is a pair of Messages, e.g., < callinvoker , callresponse >. In the behaviour
expression of the Classifier process of an Object invoking the Operation, callinvokers must come before
callresponses. In the Classifier process of an Object where the Operation is invoked, the CallAction
Messages are used as specified in UCD 17.

The accept ... in constructor of LOTOS is required to introduce the Operation’s UCD. The accept

. in is used to assign the results of a process preceding an enabling (>>) constructor to a set of LOTOS

variables defined after the accept keyword. Thus, the Operation constructor can be defined in terms of
LOTOS operators as follows.

UCD 17 An Operation is the specification of a subprocess in CLASS_CLS, e.g., OPERATION, defined
as follows:
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process CLASS CLS [ callinvoker, callresponse, destroy . class]
(c: Class) : exit :=
((

[]
( callinvoker;
OPERATION] callresponse] ( ¢) >>
accept upd.c: Class in CLASS _CLS][ callinvoker,

callresponse, destroy_class]( upd.c) )
[]

... ) [> destroy_class; exit
where
process OPERATION] callresponse]( ¢ )
exit (Class) :=
i; callresponse; exit (any Class)
endproc
endproc

According to UCD 16, a pair of Calllnvoker and CallResponse observable actions is specified for each
Operation. Further, the Operation process, called operation process, preserves the state of its Classifier,
receiving and returning the state of their Classifier’s process, as in UCD 17. For example, in Figure 14,
the RENEWLOAN process receives the bc object of type BookCopy, returning it on the exit(any
BookCopy). The any operator of LOTOS specifies that any value in the domain of the specified type,
e.g., BookCopy, can be returned. Moreover, the value of ¢ declared in UCD 11 may be unaffected. For
instance, if the Operation in the UML model is specified with the isQuery Attribute set to TRUE then
the any Class in exit must be replaced by the parameter ¢ of CLASS_CLS. An Operation’s parameters
are added to the Operation process’s parameter list. Return values are added as a LOTOS event to the
CallResponse action. In the case of the GETCOPYCODE process, the string returned by the Operation,
e.g., getccode(bc), is added to getcc_res, the GETCOPYCODE’s CallResponse action.

[process BOOKCOPY_CLS[ getcc, getcc-res, renew, renew-res,
destroy_bookcopy ] ( bc: BookCopy) : exit :=
( getcc; GETCOPYCODE[ getcc_res J( bc) >>
accept upd_bc:BookCopy in
BOOKCOPY_CLS| getcc , getcc-res , renew, renew-res,
destroy_bookcopy ]( upd-bc)
[l
renew ; RENEWLOAN[ renew_res |( bc) >>
accept upd_-bc:BookCopy in
BOOKCOPY_CLS[ getcc , getcc_res , renew, renew-res,
destroy_bookcopy ]( upd-bc) )
[> destroy_bookcopy; exit
where
process GETCOPYCODE][ getcc_res |( bc: BookCopy ) : exit (BookCopy) :=
i; getcc-res!getccode(bc); exit(any BookCopy)
endproc
process RENEWLOAN| renew_res |( bc: BookCopy) : exit (BookCopy) :=
i; renew._res; exit(any BookCopy)
endproc
endproc

Figure 14: Specification of Operations in the BookCopy process.

Finally, behavioural expressions of Operation processes are specified by an ¢ unobservable action
of LOTOS prefixing a CallResponse action, prefixing an exit operation. The i action specifies that
some action should happen during the execution of the method, but nothing can be said about this
action. Broadly speaking, LOTOS can be used for the specification of implemented software systems.
UML, however, is intended to be used during the design phase of the development process of a software
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system. Therefore, some under-specifications are expected in LOTOS specifications generated from
UML models [5]. Most under-specifications are implicitly represented in the LOTOS specification. For
example, Activities that are not refined into ActionStates, such as the connect Activity in Figure 8, are
under-specifications. In the case of Operations, however, the i actions in their behaviour expressions
are explicitly under-specifications. These 7 actions are used in LOTOS, in this case, to represent an
internal event that may not be influenced by any process (non-determinism). In fact, it is assumed that
the specification of methods is an implementation concern rather than a design concern. Nevertheless,
LOTOS could be used to specify the implementation of methods.

The BOOKCOPY _CLS version with the encapsulated attributes does not specify attributes. In
fact, this is a simplification in order to keep the translation of operations concise. However, a proper
specification of the BookCopy class should preserve the attribute specification that may be hidden from
other processes using the hide operator of LOTOS.

6.4 Association and ClassifierRole Specifications

Let C be the finite set of Classifiers of a UML design of S, and A = C x C. Thus, an Association can be
defined as follows.

Definition 1 An Association (o) is a binary relationship between Classifiers (a € A).

An Association, as in Definition 1, is not a UCD. Indeed, in this paper, the Association’s UCD is
defined by the ClassifierRoles related to an Association. Thus, let R = A x C. From R and Definition 1
we can see that Va € A= py,ps € Rep # pa ANl 4(p1) = I 4(p2) = a, where I1 4(p.) is a projection
of the value in the domain of 4 in p,. Then a ClassifierRole can be defined as follows.

UCD 18 A ClassifierRole (p) is a binary relationship between a Classifier and an Association (p € R)
specified as a CallAction, where its CallResponse action returns an Enumeration of related instances of the
associated Classifier! for the current instance. The Enumeration is generated by a GEN_ENUM process
which precedes the CallResponse. For an associated Class?2 Classifier, the GEN_ENUM is specified as
follows.

process GENENUM[] : exit (Enumeration_Class2) :=
exit (any Enumeration_Class2)
endproc

Association’s UCD can be specified from UCD 18. In fact, ClassifierRoles are synchronisations between
processes that are equivalent to Associations mathematically defined as in Definition 1 [2]. Further, the
UML specification says that there are two instances of AssociationEnd for each instance of Association.
Moreover, the AssociationEnd has an attribute aggregation which can have the values none, aggregate
or composite. Therefore, Table 4 introduces a set of UCDs based on UCD 18 and the possible combi-
nation of types of AssociationEnds in an Association. There, o is an Association between a P1 Classifier
playing a p; ClassifierRole and a P2 Classifier playing a p» ClassifierRole. Furthermore, the execution of
the CREATE_CLASS_AS[] instantiates Class, as described in Section 7.1.

The BookCopy Class is associated to the Loan and Book Classes, as presented in Figure 5. Thus, the
example in Figure 15 presents the LOTOS specification of the onLoan ClassifierRole in BOOKCOPY _CLS.
There, the Eloan returned by the onloan res is an enumeration of type Enumeration Loan. The
invocation of the hasBookCopy ClassifierRole may be specified in the specification of the Methods of
the BookCopy Operations later in the implementation phase of the Library system.

6.5 Signal, Sender and Receiver Specifications

The interaction between objects, as presented so far, is represented by Operations performed in a syn-
chronous manner. For instance, methods performing CallActions need to wait for the conclusion of the

1 As described in Section 5.3, there is an enumeration type definition for every Classifier type definition translated from
a UML model.
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1
- (P1.CLS has parameter of P2 type) A
' (execution of CREATE P1_AS[] =

I

2 : - execution of CREATE P2 AS[1) A
in AssociationEnd at pl (execution of destroy pl =
aggregation=composite execution of destroy_p2)

Table 4: Association mapping.
process BOOKCOPY_CLS[ setcc , ..., onloan, onloan_res, hasbookcopy,

hasbookcopy-res, destroy_bookcopy ] ( bc: BookCopy) : exit :=
( (* previously defined attributes and operations x)

onloan ; ONLOAN| onloan_res |( bc) >>
accept upd_bc:BookCopy in
BOOKCOPY_CLS[ setcc , ..., onloan, onloan_res, hasbookcopy,
hasbookcopy-res, destroy-bookcopy |(upd-bc)
[> destroy_bookcopy; exit
where
(x previously defined operation processes )
process ONLOAN| onloan_res |( bc: BookCopy) : exit (BookCopy) :=
i; GENENUM >> accept Eloan: Enumeration_Loan in
onloan_res ! Eloan; exit(any BookCopy)

where
process GENENUM[] : exit(Enumeration_Loan) :=
exit (any Enumeration_Loan)
endproc
endproc
endproc

Figure 15: Specification of Associations in the BookCopy process.

triggered Operation. However, there may be actions that must to be performed in an asynchronous way.
In the running case study, for instance, a Signal can be raised every time a BookCopy object is returned.
In fact, returnBook () is the Sender Operation related to the ReturnedCopy Signal in Figure 5. Moreover,
the invocation of the returnBook() Operation that raises the ReturnedCopy Signal is a SendAction for
the Signal. Nevertheless, the Signal constructor is responsible for providing such a facility modelled in
Figure 5.

UCD 22 A Signal is a Message specified immediately after the in keyword in the invocation of the
Signal’s associated Operation process (UCD 17).

UCD 23 A SendAction is the specification of a Signal in the behavioural expression of an ActionState
(UCD 28).

Thus, UCD 22 can be used to implement the required asynchronous action presented above. For

instance, returnedcopy_sig in Figure 16 is raised every time the RETURNBOOK operation of BOOK-
COPY _CLS is performed.
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process BOOKCOPY_CLS[..., returnbook, returnbook_res,
returnedcopy.-sig , destroy_bookcopy] ( bc: BookCopy) : exit :=
( (x prev. defined attributes, operations and associations x*)

( returnbook?new_bc: Bookcopy; RETURNBOOK| returnbook_res ](bc, new_bc) >>
accept upd_bc:BookCopy in returnedcopy-sig!upd_bc;
BOOKCOPY_CLS[..., returnbook, returnbook_res,
returnedcopy-sig , destroy_bookcopy](upd-bc) ) )
[> destroy_bookcopy; exit
where
(x other operation and association processes x*)
endproc

Figure 16: Specification of Signals in the BookCopy process.

The use of Signals has more impact on the structure of Classes acting as Receivers than in Operations
acting as Senders. Instances of the Reservation Class must receive the returnedcopy_sig Signal raised
by BOOKCOPY_CLS in an asynchronous way. In Figure 17, the interleave operator (|||) specifies
that the returnbook_sig is not synchronised with any other action that may be performed within
RESERVATION_CLS.

process RESERVATION_CLS[..., returnedcopy-sig, destroy-reservation ]
(res : Reservation ) : exit :=

(x behaviour ezpression for attributes ,
operations and associations x*)

)
[T

( returnedcopy-sig ?bc: BookCopy;
notify ! bc; notify_res ;

RESERVATION_CLS[..., returnedcopy-_sig, destroy_reservation ]J(res))
[> destroy-reservation ; exit
where
(x definitions of operation and association processes x)
endproc

Figure 17: Specification of the Reservation process as a Receiver of the ReturnBook Signal.

The RESERVATION_CLS is acting as a handler of the returnedcopy_sig since the Signal is in-
voking a Notify Operation also defined in the RESERVATION _CLS. However, it may be the case that
RESERVATION_CLS could rely on other Classifiers that could act as Handlers as well.

6.6 Specification of Generalisation

As presented so far, a Classifier is defined by its type and process. The BookCopy classifier is defined by
the BOOKCOPY type and the BOOKCOPY_CLS process. Thus, a Classifier can be generalised as long
it can inherit the type and process actions provided by its superclass.

In terms of type there is no difficulty in implementing this. For instance, supposing that the Person
classifier is already specified in LOTOS, the type of the Borrower classifier can be specified in the way
presented in Figure 18. For instance, the getname (castPerson(aBorrower)) type operation can return
the name Attribute defined in the Person type specification.

Moreover, Classifier features, viz. Attributes, Operations, Associations and Signals are specified as
observable actions. Therefore, a full synchronisation between PERSON_CLS and BORROWER_CLS
(e.g., PERSON_CLS || BORROW ER_CLS) makes Borrower inherit the features of Person. In this
case, Borrower must only to implement the role actions of its association with the Loan class, which is
what makes it different from Person.
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type BORROWER is PERSON with
sorts Borrower

opns mk_borrower : —> Borrower
isPerson: Person —> Borrower
castPerson : Borrower —> Person
endtype

Figure 18: Specification of Borrower as a specialisation of Person.

6.7 A Generic Type and Process Definition for Classifiers

The presented UCDs have demonstrated how to generate a LOTOS specification for a Classifier and its
Attributes, Operations, Associations and Signals. Thus, assume that a Classifier can be represented by a
tuple T =< T',Q,X,, %, >, where:

e [ is a finite set of Attributes;
e () is a finite set of Operations;
e Y, is a finite set of Signals where the Classifier is a Sender;

e ¥, is a finite set of Signals where the Classifier is a Receiver

For each tuple T there exists one LOTOS specification of a CLASS type and a CLASS_CLS process.
For instance, suppose that for a specific Classifier, the cardinality of T is w (#I' = w), which means, T’
={ a1, aa, ..., ay }. Further, suppose that each attribute of T has a corresponding type a1type, astype,
..y Gytype. Figure 19 presents the generic CLASS type.

type CLASS is ajtype, ... , awtype
sorts Class
opns mk_Class: —> Class
mk_Class2 : aitype, ... , awtype —> Class
setai: Class, aitype —> Class
getai: Class —> aitype
setaz: Class, aatype —> Class
getas: Class —> astype
set ayp: Class, autype —> Class
getay: Class —> aywtype
(x eqns specifications x)
endtype

Figure 19: A type for a generic Classifier.

Moreover, suppose that #Q =z (2 = { o1, 02, ..., 05 }), #Xs =y (Z5 = { s1, s2, ..., 5y }); and
#¥,. =2 (8, ={ t1,t2,...,t; }). Then, a set of parameters and their types is defined which is provided
by each Signal of ¥, {t;p1: tipitype, t;p2: tipatype, ... }. So, for each Operation, e.g., o;, is defined:

e a Calllnvoke action, o;, and a CallResponse action, o;res;
e a set of parameters along with their respective types, {o;p1: o;p1type, 0;pa: o;patype, ... }; and
e a set of results along with their respective types, {o;r1: o;r1type, 0;r2: o;ratype, ... }.

Finally, to simplify the representation of CLASS_CLS, let G be the ordered set of gates: {aiinp,
aiout, azinp, azout, ..., Auinp, a,0ut, 01, O1TES, 02, 02TES, ..., Og, OzTES, 51, 52, ..., Sq, --.y Sy, 11, 2,
t,, destroy_class}. Thus, Figure 20 presents the generic CLASS_CLS process.

eeey
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process CLASS_CLS [G](c: Class) : exit :=

( a1inp?pi:aitype; CLASS_.CLS[G](setai(c,p1))

[] aioutlar; CLASS_CLS[G](¢)
[] awinp?pw:awtype; CLASS_CLS[G]( setay(c,pw))
[1 awout!aw; CLASS_CLS[G](c¢)
[] o01701p1i:o1pitype?oipa: o1patype...; OPERj[oires](c, oipi, oip2, ...) >>
accept upd-c:Class in CLASS_.CLS[G](upd-c)
[] 02?02p1:02pitype?oap2: oxpatype...; OPERg[ozres](c, 0zp1, Ozp2, ...) >>
accept upd_c:Class in CLASS_CLS[G](upd-c)
[l (t17tip1: tipitype?tipa: tipatype?...; ...; CLASS.CLS[G](...))
[1] (tz?t.p1:t.pitype?t,pa:t.patype?...5; ...; CLASS_CLS[G](...))
) [> destroy_class ; exit
where
process OPER;[o;ires]
(c: Class, oipi: oipitype, oipa: oipatype, ...): exit(Class) :=
i; oiresloiritoira!...; exit(any Class)
endproc

process OPER; [o,7es]

(c: Class, 0zpi: Ozpitype, o0zp2: ozp2type, ...): exit(Class) :=
i; oaresloazrilosre!...; exit(any Class)
endproc

endproc

Figure 20: A process for a generic Classifier.

7 A Semantics for Some Behavioral Aspects of UML

The presented specification of the Classifier constructor can describe important aspects of any software
system. Attributes can describe the state of systems. Operations and Signals can describe the commu-
nication mechanisms of objects. However, there are two major aspects of software systems that still
need to be specified. The first aspect is how actions, e.g., CallActions and SendActions, can be per-
formed to provide a system’s functionalities. The second aspect is how objects are interconnected to
share an Operation’s messages and Signals, thereby supporting actions. The specification of a top-level
Activity (UCD 2) composed of ActionStates and subactivities, that are also Activities (UCD 1), explains
how actions can be performed. Thus, a UCD for each category of ActionState in the UML specification
may be needed to generate LOTOS specifications for Activities. The specification of ObjectFlowStates
associated with ActionStates explains how objects, in this case, ClassifierInStates, can be interconnected.
Thus, UCDs for ObjectFlowState and ClassifierInState may also be needed to generate such specifications
for Activities. In fact, using these required UCDs it is possible, for instance, to produce the LOTOS
specification in Figure 21 for the RenewLoan Activity in Figure 4. Therefore, the missing UCDs needed
to generate the RENEWLOAN_ACT in Figure 21 are introduced in this section.

7.1 CreateAction ActionState Specification

CreateActions are performed to instantiate Classes. The specification of when actions creating objects
can take place must be specified to identify when objects are available. For instance, in Figure 4,
createRenewUI is an ActionState that creates ui, which is an instance of the RenewUTI Class. In Figure 21,
CREATE_RENEWUI_AS is the process responsible for the instantiation of ui. Indeed, ui is created by
the mk_renewui type operation (UCD 11).

UCD 24 A CreationAction ActionState for a Class Classifier is specified as follows:

process CREATECLASS AS[abort] : exit(Class) :=
( i; exit(mkclass) )
[> abort; exit

endproc
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process RENEWLOANACT [ abort ] : exit :=
hide setcc, setcc_res, getcc, getcc_res, renew, renew.res,
returnbook, returnbook_res, destroy_bookcopy,
getbookcopy, getbookcopy-res, destroy_renewui in
( ( CREATERENEWUIAS[ abort] >>
accept ui:RenewUI in
( RENEWUICLS[ getbookcopy, getbookcopy-res, destroy-renewui|( ui)
|[ getbookcopy, getbookcopy-res]|
( GET.BOOK_-COPY_AS[ getbookcopy, getbookcopy-res, abort] >>
accept bc:BookCopy in
( BOOKCOPY.CLS[setcc, setcc-res, getcc, getcc-res,
renew, renew_res, returnbook, returnbook_res,
destroy_bookcopy ]( bc)
|[ renew, renew_res]
( RENEW_LOAN_AS[renew, renew.res, abort]|>>
destroy_bookcopy; destroy_renewui; exit
) ) ) ))
[> abort; exit )
where
process CREATERENEWUIAS[ abort | : exit (RenewUI) :=
( i; exit(mk_-RenewUI) )
[> abort; exit
endproc
process GETBOOK_COPY_AS[ getbookcopy, getbookcopy-res, abort] :
exit (BookCopy) :=
( getbookcopy; i; getbookcopy-res?bc:BookCopy; exit(bc) )
[> abort; exit
endproc
process RENEW_LOAN_AS[renew, renew_res, abort] : exit :=
( renew; i; renew_res; exit )
[> abort; exit
endproc
endproc

Figure 21: Specification of the ActionStates of the RenewLoan Activity.

The CreateAction ActionState is invoked in its Activity’s behaviour expression (UCD 1) by the < CRE-
ATE_ACTIONSTATE> non-terminal specified as follows.

<CREATE_ACTIONSTATE> ::=
‘“ CREATECLASS AS[abort] >> accept c¢: Class in ("’
<activity_behaviour > ‘)’

The definition of the types and processes of the modelled Classifiers are specified in the top-level
Activity. Thus, the description of the structural part of the software system can be used throughout
the specification of the behavioural aspects of the software system. For instance, CreateActions can be
specified within any Activity.

7.2 ObjectFlowState and ClassifierInState Specifications

The term object flow is not clearly presented in the UML specification [27]. Even though, UML provides
the ObjectFlowState and ClassifierInState constructors to specify object flows. Figure 22 indicates the
UML constructors for building object flows. In Figure 21, the ui ClassifierInState from Figure 4 is
produced as a result of the CreateRenewUI ActionState. ObjectFlowStates specify the incoming and
outgoing of objects with respect to the scope of an ActionState. Furthermore, ObjectFlowStates provide
the Object where the associated ActionState takes place, and optional Objects which can be used as
parameters to the Action performed in an ActionState.

UCD 25 A ClassifierInState is an Object, as specified by UCD 12. This UCD is introduced since Classi-
fierlnStates and Objects are distinct constructors in the UML metamodel.

UCD 26 An incoming ObjectFlowState is a synchronisation of a Signal or the Messages of an Operation
between an ActionState process and a Classifier process.
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An ChiectFlowState
A ClassifierInState

Figure 22: An object flow and its ObjectFlowState and ClassifierInState.

UCD 27 an outgoing ObjectFlowState is the passing of a ClassifierInState to an ActionState.

7.3 CallAction and SendAction ActionState Specifications

The ui.getBookCopy () is a CallAction ActionState where the GET_BOOK_COPY operation of a RenewUI
Object instantiated in createRenewUI is invoked. This GET_BOOK_COPY operation is defined in the
RENEWUI_CLS. No parameter is passed to this operation, i.e., the getBookCopy action is not followed
by any variable. The result of the operation is the bc Object of the BookCopy Class. In fact, this bc
should be an Object either previously instantiated in the current session or produced as the result of
a query submitted to an associated database system. Once again, the exactly specification of how the
Method of an implementation could be implemented is under-specified during the design.

A SendAction ActionState has a LOTOS specification quite similar to a CallAction ActionState. The
main differences between these two categories of ActionStates are those differences between SendActions
and CallActions. For instance, if the associated Action is a SendAction, the specification of the ActionState
does not includes the Calllnvoker Message. With respect to their ActionStates, ObjectFlowStates and
ClassifierInStates are defined in the same way.

UCD 28 An ActionState performing o CallAction or a SendAction that has incoming object flows OF_IN,
OF_INy; and outgoing object flows OF_-OUT, ... OF.OUTyN of types OF_OUT,_-TYPE ... OF--
OUTN_-TYPE is defined by a LOTOS process definition specified as follows:
process ACTIONSTATE_AS|[action, action.res]
exit (typeresult) :=
action; action res? result :type_result;
exit (result)
endproc

The ActionState is invoked in its Activity’s behaviour expression (UCD 1) by the <CALL_SEND._-
ACTIONSTATE> non-terminal specified as follows.

<CALL.SEND_ACTIONSTATE> ::=
<object_flow_in > <synch>
‘¢ ACTIONSTATE_AS|action, action.res] accept’’
<object_flow_out_list > ““in (”’
<activity_behaviour > ¢*)’’
<object_flow_in > ::=
<object_flow_in_name >
““[” < object _flow_gates > ‘]’

<synch > ::= ‘‘|[action, action.res]|’’
<object_flow_in_name > ::= ‘“QFIN;’’ — ““ QF INy”’
<object_flow_out_list > 1= <> |
<object_flow_out_list > <object_flow_out >
<object_flow_out > ::= <object_flow_out_name > ‘‘:”’

<object_flow_out_type>
<object_flow_out_name > ::=
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¢“QF.0OUT,”” — ““OF.OUTN"’
<object_flow_out_type > ::=
¢“QF. OUT; TYPE’’ — ““OF OUTN TYPE”’

7.4 DestroyAction ActionState Specification

ActionStates where DestroyActions are performed could be specified in a similar way to SendAction Ac-
tionStates. However, DestroyActions are not specified in activity diagrams of UML. This means that no
explicit notation exists in activity diagrams to specify the destruction of an Object. We assume this lack
of specification is due to two aspects of the UML specification:

o lack of a formal framework;

o lack of a feasible description of how users in interactive systems can communicate cancelling actions
to Objects and Activities.

We suggest the LOTOS semantics for UML as a feasible formal framework for discussing such De-
stroyAction semantics. However, a minimal specification is required to avoid the creation of deadlocks
when compiling the generated LOTOS specification. Therefore, the problem here is the identification of
a semantics for the DestroyAction that does not requires any special notation. The presented approach
is to force a DestroyAction for any Object created in an Activity when leaving the activity. This is im-
plemented in the LOTOS mapping as an invocation of the destroy_class actions of every class used
within the Activity that is not used in other Activity. In fact, destroy_class actions are the expected
LOTOS constructors to be used in a DestroyAction ActionState’s UCD.

8 LOTOS-Based UML Model Checking

There are many tools that can perform verification of LOTOS specifications making use of the formal
properties of LOTOS. Therefore, suppose that the ® function introduced in this paper can be defined for
the other UML constructors not considered in this paper. This means that using ® it may be possible to
verify any UML model. Furthermore, problems that may be identified in LOTOS specifications generated
by the ® function may be interpreted as a UML semantic problem.

8.1 Verification of the Library System specification

The LOTOS specifications of the UML models of the Library System presented in this paper were checked
using a LOTOS verification tool. Thus, a LOTOS specification for the class diagram in Figure 5 and
the activity diagrams in Figures 3 and 4 was implemented applying the UCDs presented in this paper.
Indeed, most of the LOTOS examples in this papers are fragments of this LOTOS specification, which
has 351 lines of code.

CADP [9] was selected to verify the LOTOS specification. CADP is a set of integrated tools used
to verify LOTOS specifications. EUCALYPTUS is the graphical environment of CADP responsible
for invoking the CADP tools that analyse the LOTOS specification. Figure 23 presents a snapshot of
EUCALYPTUS when verifying the LOTOS specifications of the Library System. The backgroud frame
in Figure 23 is the main user interface of EUCALYPTUS.

The CAESAR and CAESAR.ADT tools in CADP are responsible for the compilation and verification
of the LOTOS specification. For instance, using CAESAR it was possible to verify if the LOTOS
specifications were syntacticly correct. Further, it was possible to generate a Binary Coded Graph (BCG),
which is a computer representation for a Labelled Transition System [26] from the LOTOS specifications.
In a BCG, a state is of the entire application rather than of part of the application such as an object. In
the case of the Library System specifications, we can see in the BCG monitor frame in Figure 23 that its
BCG is composed of 243 states and 940 transitions. Moreover, from the BCG generated, it was possible
to verify if the LOTOS specifications did not have deadlocks and livelocks. and unreachable states. Still
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Figure 23: Snapshot of CADP when analysing the Library System specification.

in Figure 23, we can have a partial view of the generated BCG. The arcs in this partial view are the
transitions and they are labelled with their triggering actions. As expected, most actions in the BCG
are internal actions, e.g., 4, since Operations are under-specified in the LOTOS specifications generated
from UML models.

8.2 Complex UML Model Checking

The identification of potential problems such as deadlocks and livelocks were expected to be achieved
at the beginning of this work. However, it was not expected that many of these deadlocks could be
interpreted as modelling problems related to the proper use of object flows. Furthermore, it was not
expected that many other of these deadlocks could be interpreted as modelling problems related to
improper specifications of the complex relationship between activity diagrams and class diagrams. In
fact, some identified deadlocks were related to the control-flow properties of the activity diagrams. For
instance, it was possible to create LOTOS specifications with deadlocks from activity diagrams that do
not specify object flows. On the other hand, there were deadlocks that were related to the data-flow
properties of the activity diagrams. For instance, there were deadlocks caused by the improper use of
object flows. Nevertheless, the UML models used to generate the LOTOS specifications that have both
categories of deadlocks, however, conform with the UML metamodel. This means that these are valid
UML models since they can be modelled in any UML tool. However, these UML models are incorrect
in the sense they can specify systems that can have defects such as deadlocks, livelocks and unreachable
states. Considering this, we are referring to these defects as semantic problems of UML.

Two modelling scenarios derived from the UML models of the Library System are used to exemplify

26



the potential benefit to use the LOTOS-based semantics to verify UML models.

Scenario 1 presents a specification where is not guaranteed that the bc.BookCopy will be instantiated
before the bc.renewLoan() ActionState is reached. This kind of problem may be easy to identify in a
simple diagram such as that in Figure 24. However, this is a kind of problem that tends to be difficult to
identify in medium and large-scale models. The identification of this category of problem using CADP
is not also a trivial task. In fact, the problem was identified as a deadlock that could be fixed in the
generated LOTOS specifications. However, amendment performed in the LOTOS specification might
not be able to be mapped back into the original UML model. Nevertheless, CADP could identify the
point in the LOTOS specification were the problem were, and from the LOTOS specifications it is not
difficult to identify its equivalent constructors in the UML model due to the name conventions.

renewLoan

0%{createRenewUI}--->{ u:Renew UL ‘
v

berenewloan() Jut getB ook Copy()

bo:BookCopy

Figure 24: Modelling scenario 1.

The potential problem identified in Scenario 1 is related to the proper use of object flows in activity
diagrams. Scenario 2 is an example of a potential problem relating the activity diagram in Figure 25
with the class diagram in Figure 5. The 1n Object in Figure 25 is of the Loan Class that is aggregated to
the BookCopy Class. Therefore, the associated instance of BookCopy should be instantiated at the time
the ui.getLoan() ActionState is reached, which does not happen. Once again the presented problem
could be identified by CADP as a deadlock. However, the analysis of such a problem in terms of the
original UML models is a complex problem. The main difference between the deadlock in scenarios 1
and 2 is that in scenario 2 the deadlock appeared in the specification of a process representing a Class
rather than in a process representing an Activity.

renewLoan

*—{ createRenew(JL |“~H
,] ui:Renew Ul

R
@)@[ln.dueDate =newDate jé—/

ut getloan()

Figure 25: Modelling scenario 2.

An ad-hoc analysis of LOTOS specifications using CADP was able to identify semantic problems
in scenarios 1 and 2. A systematic identification of the potential problems that can be verified by the
proposed LOTOS-based semantics in other scenarios, however, is out of the scope of this paper. Moreover,
a systematic interpretation in terms of UML diagrams of problems identified in LOTOS specification is
also out of the scope of this paper.

27



9 Conclusions

This paper has demonstrated that it is possible to define a function that translates UML metamodel
elements into LOTOS operators. Further, it has demonstrated that it is possible to verify indirectly the
correctness of UML models verifying the produced LOTOS specification using available LOTOS tools.
Moreover, the proposal presented is more comprehensive than other available semantics for UML (e.g.,
[5, 7, 8, 21, 24]). Indeed, it covers the major constructors of class diagrams and activity diagrams.
The proposal also provides a formal specification for object flows, although this is incomplete even in
terms of the informal specification in the UML specification. Considering that deployment diagrams are
supported by class diagrams, and that statecharts are activity diagrams where transitions are restrict
to those within a single object we observe that our approach can potentially be extended to cover the
entire specification of a UML semantics.

Another benefit of the proposal presented is that it makes clear some well-known shortcomings of
UML. For instance, it makes clear the the informal specification of CreateAction does not provide enough
details to describe how it should be specified formally. Even worse is the informal specification of
DestroyAction, which may have an impact on the whole application specification rather than being local
to a single object. Thus, the presented proposal can be used for people to describe possible semantics
for these two important actions.

A third benefit of the proposal presented is that it can be used as a framework to integrate other
proposals of a semantics for UML. Indeed, such a framework could be used to incorporate the contribu-
tions of other semantic approaches covering parts of the UML specification not contemplated in previous
work. There are many reasons for considering our proposal a feasible one for such an integration. First,
LOTOS is a powerful specification language that already handles the specification of distributed sys-
tems. Second, the proposal uses the code-metamodel approach [8] at the same time as it uses an adapted
mathematical theory of Breu et al. [5], as described in Section 5. Third, a LOTOS specification for stat-
echarts can be incorporated into our approach re-using some definitions of Wang et al. [39]. Doing this
statechart integration, the semantics considerations of UML statecharts presented in Latella et al. [21]
can be integrated in our approach.

In terms of future work, there are two important directions that can be followed. The first direction
is towards a complete specification of the UML semantics using the simplest approach available. In this
sense, we believe that the presented proposal should be considered since it is based on a single specification
language that provides verification facilities. The second direction is towards an automatic description
of the verification results obtained from LOTOS tools in terms of UML models. The importance of the
second direction is to make the verification facilities of LOTOS accessible for a wide community, in this
case the UML community.
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