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Abstract

Portable proofs are a new and interesting way of integrating theorem provers into distributed environments
like the web. This article reports on user interface’s challenges and opportunities for theorem provers in
such environments. In particular, this article reports on the design of user interfaces used for searching,
browsing and inspecting TSTP problems when published as portable proofs.
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1 Introduction

The integration of theorem provers into hybrid distributed environments offers a

new set of challenges and opportunities for providing explanations of system results.

Distributed and portable proofs can be more interesting than stand alone proofs for a

number of reasons: they may be deployed, stored and reused outside of environment

in which they were generated; portions of the proof (e.g., individual inference steps

or combinations of inference steps) may be named, annotated, and reused; support

for portions of the proofs may be provided by other portions of the system (or even

found by searching the web); axioms may have multiple lines of support; axioms

can be asserted by multiple sources; and supporting evidence can be provided by

multiple sources (instead of only the one source used in the original proof). We use

the term portable proofs to refer to artifacts with these properties.
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In order for portable proofs to realize their full potential, innovative user inter-

faces are required. For example, consider the following tasks:

• Searching for proofs and proof fragments

• Searching for proof annotations for reuse

• Browsing proof annotations

For example, what are the design requirements for the query interface of a proof-

aware search engine? Also, what are the design requirements for the presentation

of the search results? Considering that the results can be entire proofs or just proof

fragments, how can a user interface show the exact part of the proof is represented

by the search result? Moreover, how can the user intuitively ask for more details of

the results, whether the additional results are related to in-depth disclosure of proof

details or to a better understanding of the proof structure? The browsing of proof

annotation can become particularly challenging considering the amount of details

that can be incorporated into proofs.

In addition to the design issues above, we see that traditional challenges related

to proof presentation remain for portable distributed proofs:

• Conclusion presentation

• Complex proof presentation

• Browsing techniques that incorporate evidence and sources

In this paper, we address the challenges above. The rest of this paper is organized

as follows. Section 2 describes a typical use of our Inference Web explanation envi-

ronment tool suite in a theorem prover setting. Section 3 revisits Inference Web’s

Proof Markup Language (PML) used to encode portable proofs. Section 4 explains

how portable proofs are extracted from PML documents. Section 5 describes how

Inference Web’s Search (IWSearch) can be used to search for both proofs and proof

metadata on the web. Section 6 introduces ProbeIt - a tool that supports proof

inspection. Section 8 summarizes the main results for this paper.

2 Motivating Use Case

We leverage the TPTP collection of problems and proofs as the setting for our

use case. Consider a simple scenario where a user is interested in solving one of

the problems and investigating a particular theorem prover’s solution. (Later we

will expand to investigating multiple prover’s solutions for the same problem). Our

initial use case is the “Aunt Agatha” problem PUZ001+1 in the TPTP collection [11],

and consider the SNARK system’s [10] solution of the problem.

Proofs generated by theorem provers can be published on the web. However, a

typical proof output by a theorem prover is not annotated with meta information

such as generator, time, and context. In fact, a proof’s content is typically restricted

to a raw identification of derivations plus a brief mention of the name of the inference

rule used in each derivation. Without annotations, proofs may be used to debug the

reasoning within theorem provers, but may be of limited use when trying to identify

many other important properties of proofs such as the authors of the provers or a

proper description of the inference rules used.
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In this case of SNARK solving the Aunt Agatha problem, we may want to

annotate that the proof was generated by SNARK. To be more specific, considering

the possibility that the proof steps can be distributed on the web, we may want

to annotate that SNARK was responsible for each step of the proof for Agatha.

Further, we want the annotation to say that SNARK was implemented by Mark

Stickel who is affiliated with SRI International. More generically, metadata should

be able to be added to explain every single aspect of a proof, including the theorem

provers responsible for generating the proofs, the version of the implementation,

inference rules used by the theorem provers, axioms used in each proof, etc. More

interestingly, metadata is expected to be reused at proof generation time. For

example, an inference rule may be used multiple times in a proof as well as to

be reused in multiple proofs from. In this case, one should be able to create and

identifier, i.e., a URIref, and to publish the metadata about the rule. With this

identifier in place, the metadata can be reused as needed.

We consider the following issues with relation to user interfaces for distributed

proofs.

(i) How to search for proof-related metadata on the web, e.g., how to search for

SNARK metadata?

(ii) How to verify that proof metadata correctly corresponds to the object of con-

cern, e.g., that SNARK metadata is about the theorem prover from SRI Inter-

national and implemented by Mark Stickel?

(iii) How to understand the structure of a distributed proof?

(iv) How to visualize a richly annotated proof?

The use of PML and (more) IW tools on the full TSTP solution library is also

described in [8]. In the rest of the paper, we further describe the interface to the

tools we use to create a demonstration environment for distributed proofs.

3 Proof Markup Language

In our environment, we encode distributed proofs in the Proof Markup Language

(PML) [4,7]. We do this in the setting of the Inference Web [5] explanation in-

frastructure, which includes a number of PML-literate tools and services such as

proof browsers, e.g., ProbeIt [1] and the IW Local View, and search services e.g.,

IWSearch. Inference Web also includes the PML ontologies and and references a

collection of PML documents already available on the Web. We have generated

a collection of PML proofs for the TPTP problems [8] and made the collection

available on the Web.

Different than other markup languages for mathematical documents such as

OMDoc [3], PML focus is on the creation and handling of graphs used to represent

information manipulation traces created by agents (i.e., humans or machines) to

infer conclusions. These graphs may be used to encode a formal proof but they may

also be used to encode incomplete information on how conclusions were inferred.

Moreover, a single graph may include a single justification for a given conclusion

but it may include many alternate justifications for the same conclusion. Moreover,

PML can be used to encode any kind of conclusion while OMDoc prescribes a

3



Pinheiro da Silva et al.

precise way of encoding conclusions as formal logical sentences. Because of these

characteristics, OMDoc is expected to have a better support for handling conclusions

than PML since the conclusions need to conform to the OMDoc syntax. On the

other hand, PML can be used to encode any kind of proof, including the proofs

that can be encoded in OMDoc and informal proofs such as information extraction

based on natural language processing [6].

In PML, NodeSet 1 and InferenceStep are the main constructs of portable proofs

and web explanations.

A NodeSet represents a step in a proof whose conclusion is justified by any of

a set of inference steps associated with the NodeSet. PML adopts the term “node

set” since each instance of NodeSet can be viewed as a set of nodes gathered from

one or more proof trees having the same conclusion.

• The URIref 2 of a node set is the unique identifier of the node set. Every node

set has one well-formed URIref.

• The hasConclusion of a node set represents the expression concluded by the

proof step. Every node set has one conclusion, and a conclusion of a node set is

of type Information.

• The expression language of a node set is the value of the property hasLanguage

of the node set in which the conclusion is represented. Every node set has one

expression language, and that expression language is of type Language.

• Each inference step of a node set represents an application of an inference rule

that justifies the node set’s conclusion. A node set can have any number of

inference steps, including none, and each inference step of a node set is of type

InferenceStep. The inference steps are members of a collection that is the value

of the property isConsequentOf of the node set. A node set without inference

steps is of a special kind identifying an unproven goal in a reasoning process.

An InferenceStep represents a justification for the conclusion of a node set. In-

ference steps are anonymous OWL classes defined within node sets. For this reason,

it is assumed that applications handling PML proofs are able to identify the node

set of a inference step. Also for this reason, inference steps have no URIs.

• The rule of an inference step, which is the value of the property hasRule of the

inference step, is the rule that was applied to produce the conclusion. Every

inference step has one rule, and that rule is of type InferenceRule. Rules are in

general specified by theorem prover developers. However, PML specifies three

special instances of rules: Assumption, DirectAssertion, and UnregisteredRule.

When specified in an inference step, the Assumption rule says that the conclusion

in the node set is an explicit assumption. The DirectAssertion rule says that the

conclusion of the node was provided by the sources associated with the inference

step. The UnregistredRule says that the conclusion in the node set was derived

by some unidentified rule. UnregisteredRules allow the generation of proofs-like

structures applying undocumented, unnamed rules.

• The antecedents of an inference step is a sequence of node sets each of whose con-

1 PML concept names are typed in sans serif style and PML attribute names are typed in courier style.
2 http://www.ietf.org/rfc/rfc2396.txt
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clusions is a premise of the application of the inference step’s rule. The sequence

can contain any number of node sets including none. The sequence is the value

of the property hasAntecedent of the inference step. The fact that the premises

are ordered may be relevant for some rules such as ordered resolution [9] that use

the order to match premises with the schema of the associated rule. For other

rules such as modus ponens, the order of the premises is irrelevant. In this case,

antecedents can be viewed as a set of premises.

• Each binding of an inference step is a mapping from a variable to a term specifying

the substitutions performed on the premises before the application of the step’s

rule. For instance, substitutions may be required to unify terms in premises in

order to perform resolution. An inference step can have any number of bindings

including none, and each binding is of type VariableBinding. The bindings are

members of a collection that is the value of the property hasVariableMapping

of the inference step.

• Each discharged assumption of an inference step is an expression that is dis-

charged as an assumption by application of the step’s rule. An inference step can

have any number of discharged assumptions including none, and each discharged

assumption is of type Information. The discharged assumptions are members of

a collection that is the value of the property hasDischargeAssumption of the

inference step. This property supports the application of rules requiring the dis-

charging of assumptions such as natural deduction’s implication introduction. An

assumption that is discharged at an inference step can be used as an assumption

in the proof of an antecedent of the inference step without making the proof be

conditional on that assumption.

• The engine of an inference step, which is the value of the property hasInfer-

enceEngine of the inference step, represents the theorem prover that produced

the inference step. Each inference step has one engine, which is of type Infer-

enceEngine.

• The timestamp of an inference step, which is the value of property hasTimeStamp

of the inference step, is the date when the inference step was produced. Time

stamp is of the primitive type dateTime. Every inference step has one time stamp.

An inference step is said to be well-formed if:

(i) Its node set conclusion is an instance of the conclusion schema specified by its

rule;

(ii) The expressions resulting from applying its bindings to its premise schemas are

instances of its rule’s premise schemas;

(iii) It has the same number of premises as its rule’s premise schemas; and

(iv) If it is an application of the DirectAssertion rule, than it has at least one source,

else it has no sources.

PML node set schemas and PML inference step schemas are defined as follows.

A PML node set schema is a PML node set which has a conclusion that is either

a sentence schema 3 or a sentence; which has a set of variable bindings that map

3 A sentence schema is a sentence optionally containing free variables. An instance of a sentence schema S
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free variables in the conclusion to constants; which has zero of more inference steps;

and whose inference steps are either inference steps or inference step schemas.

An inference step schema is an inference set of a node set schema whose antecedents

are node set schemas.

4 Portable Proofs

Since a PML node set can have multiple inference steps and each antecedent of each

of those inference steps can have multiple inference steps, a PML node set N and

the node sets recursively linked to N as antecedents of inference steps represent a

graph of alternative proofs of N ’s conclusion. In this section, we describe how to

extract individual proofs of N ’s conclusion from that graph of alternative proofs.

We shall call each such extracted proof a “proof from N”.

We begin by defining a proof as a sequence of “proof steps”, where each proof step

consists of a conclusion, a justification for that conclusion, and a set of assumptions

discharged by the step. “A proof of C” is defined to be a proof whose last step

has conclusion C. A proof of C is conditional on an assumption A if and only if

there is a step in the proof that has A as its conclusion and “assumption” as its

justification, and A is not discharged by a later step in the proof. An unconditional

proof of C is a proof of C that is not conditional on any assumptions. (Note that

assumptions can be made in an unconditional proof, but each such assumption must

be discharged by a later step in the proof.) Finally, proof P1 is said to be a subproof

of P2 if and only if the sequence of proof steps that is P1 is a subsequence of the

proof steps that is P2.

Given these definitions, we can now define the proofs that are extractable from

a PML node set as follows: for any PML node set N , P is a “proof from N” if and

only if:

(i) The conclusion of the last step of P is the conclusion of N ;

(ii) The justification of the last step of P is one of N ’s inference steps S; and

(iii) For each antecedent Ai of S, exactly one proof from Ai is a subproof of P .

If N is a node set with conclusion C, then a proof from N is a proof of C.

5 Searching for Proofs and Proof Metadata

IWSearch is the search tool for the Inference Web Infrastructure. IWSearch was

developed to overcome a number of limitations related to metadata management

found in our past practice: (i) IWBase, Inference Web’s registry-based metadata

management system, provides limited mechanisms for accessing metadata entries

– a user can only browse the type hierarchy of those entries to find entries; and

(ii) no service is available to find and reuse PML provenance metadata published

on the web. IWSearch searches over PML proofs and proofs’ metadata that has

published on the web, and thus focuses on providing access to proof elements that

have already been registered in the database registry.

is a sentence that is S with each free variable replaced by a constant.
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Fig. 1. IWSearch results for inference engine SNARK.

IWSearch is modeled off of SWOOGLE[2], which can be viewed as a search tool

that “understands” RDF. Similarly, IWSearch can be viewed as a search tool that

“understands” PML and OWL. IWSearch has an indexing phase that indexes terms,

and also looks for particular terms using its knowledge of PML. Some metadata that

IWSearch looks for includes:

• uri: Each PML object is identified by a unique identifier, i.e., a URI.

• type: Each PML object has one most-specific type, and IWSearch additionally

indexes the other general types of a PML object. For example, an instance

of inference engine metadata may also be considered as an instance of agent

metadata.

• label: Each PML object has one label indicating its name. In the absence of

name, the raw string content of the object is used. For example, an inference

engine name is “SNARK 20070805r043”, but for a conclusion, its label is its raw

string content -” ? [X] : ( lives(X) & killed(X,agatha) )”.

• source: Each PML object is extracted from one PML document, and the URL of

the PML document is deemed as the source.

With the above metadata, IWSearch can provide much more than keyword

search. By searching for +SNARK +type:inferenceengine, we can restrict the

query and return only PML objects in the specified type. This is particularly

useful if we want SNARK-generated proofs in PML to be annotated with the in-

formation that the proofs were generated by SNARK. Figure 1 shows the result of

such a search. When querying for SNARK, one may find multiple metadata en-

tries that are identified as SNARK. There are multiple reasons for this: more than

one theorem prover is called SNARK; multiple versions of a single theorem prover;

multiple metadata statements about the same theorem prover; or any combination

of the previous reasons. By browsing the metadata, as in Figure 2, one may be

able to verify multiple properties of the engine metadata such as authors, author’s

affiliation, engine’s website as well as the creator of the metadata. By browsing

the metadata, the user should be able to decide whether to reuse some existing

metadata or even to create new metadata.
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Fig. 2. Browsing metadata about an inference engine called SNARK.

6 Browsing Proofs

Probe-It! consists of three primary views to accommodate the different kinds of

proof information: queries, proofs (or justifications), and provenance (or metadata).

The query view shows the links between a given problem and possible solutions

for the problem. Upon accessing one of the solutions in the query view, Probe-It!

switches over to the global view associated with that particular solution. All views

are accessible by a menu tab, allowing users to navigate back to the query view from

any other view.

The global view graphically shows the reasoning associated with a given solu-

tion. Probe-It! renders this information either as a directed acyclic graph (DAG)

or as a tree. The example of a tree view of the SNARK’s solution for the Agatha

problem is shown in Figure 3. In this view, users can visually see the conclusions

of each node as well as some essential metadata.

The local view provides a comprehensive view of proof information avail-

able mainly at the level of a single proof step. For example, in Figure 4, one

of the intermediate conclusions of the proof is that the butler hates himself

(“hates(butler,butler”). The conclusion itself is encoded in TPTP-CNF language,

and the view shows how the conclusion was derived: SNARK 20070805r043 was the

theorem prover responsible for deriving the conclusion by applying the rule SNARK

HYPERRESOLVE to the antecedents also listed in the view. One of the main benefits

of the global view is that it provides a good insight about the structure of the proof.

For example, for the intermediate conclusion we can see that it was derived from

three antecedents and that one of antecedents was itself derived from other state-

ments. Further, the edge leaving the intermediate conclusion is evidence that it is

not final (i.e., the intermediate conclusion is not an answer for the problem being

solved by the inference engine.

The local view is structured to be a textual description of the main properties
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Fig. 3. ProbeIt! Global View

of a single proof step. This description is divided into four sections, as we can see

in Figure 4: conclusion, how, why, and to answer. The conclusion section shows

the main result of the selected inference step along with meta-information about

the result. The how section identifies the antecedents as the inference rule applied

to theses antecedents to infer the conclusion of the inference step. The why section

shows the final conclusion of the entire proof and intermediate goals. The why

section also identifies the following conclusion inferred from the conclusion of the

current step of the proof. Last, the to answer section shows the question that the

theorem prover is answering.

One very important aspect of the local view is that it provides information about

sources and some usage information e.g., access time, during the execution of an

application or workflow. Every node in the justification DAG has an associated

provenance description. This information, usually textual, is accessible by select-

ing any of the aforementioned nodes. For example, upon selecting the “SNARK

20070805r043” hyper-link in the local view in Figure 4, meta-information about the

inference engine, such as the responsible organization, is displayed in another panel.

Similarly, users can access information transformation nodes, and view information

about used algorithms. It is important to note that the requested meta-data is

exactly the same information already presented in Figure 2. This exemplifies a case

where user interface software can be reuse by multiple tools on the same way that

the tools reuse meta-data to encode portable proofs.
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Fig. 4. ProbeIt! Local View

7 Implementation and Deployment

The core functionality provided by Probe-It! can be divided into three main sub-

systems: the PML API, the DIVA framework, and the visualization framework,

which parse PML documents, provide a graphical framework from which execution

traces can be rendered, and render the node set conclusions respectively. Both the

PML API and the Diva framework are implemented in Java, while some viewers

contained in the visualization framework require native libraries. XMDV, for exam-

ple, is supported by OpenGL and both the 2D plot viewer and grid image viewer

are based on native Generic Mapping Tools (GMT) scripts. Both the OpenGL and

GMT libraries are implemented as Window’s dynamic link libraries (DLLs). Al-

though equivalent libraries for Linux and Macintosh exist, in the interest of time,

only a Windows version was considered. The challenge of configuring Probe-It! to

be compatible across all platforms will always exist because many of the popular

viewers are pre-compiled commercial applications, that cannot be modified; instead,

the current practice is to wrap these applications inside a Probe-It! by calling them

from within Java.

Although Probe-It! contains a small set of pre-configured viewers, it is antici-

pated that Probe-It! will become more of a framework, from which scientists can

subscribe existing viewers, thus difficulties with adapting Probe-It! to run on any
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OS greatly restrict the portability of Probe-It!; we are in the process of implement-

ing Probe-It! as a Web application.

8 Summary

Inference Web provides an explanation infrastructure for many types of distributed

question answering systems, including theorem provers. It uses a proof interlingua

called the Proof Markup Language as an explanation interchange language. It

provides a collection of applications to handle proofs distributed on the web. Some

of these applications are interactive tools that enable users to better visualize and

thus understand portable proofs. In this paper, we provided a theorem prover style

use case chosen from the TPTP library. We showed how the IWSearch tool may

be used to find proofs with particular properties and provided an example from

TPTP. We also described a use of ProbeIt for browsing portable proofs. ProbeIt

allows theorem prover developers and users to visually inspect the structure of proofs

(with the help of the global view) and the details of each node of a proofs (with the

help of the local view).

The Inference Web infrastructure and framework is not restricted to a fixed

number of tools to support a given functionality. For example, in terms of inter-

active tools in support of portable proof browsing, the Inference Web provides the

following tools in addition to ProbeIt, as discussed in [8]: the original IWBrowser for

browsing PML proofs and proof fragments with the help of standard HTML brows-

ing capabilities and the NodeSet browser that has been integrated into ProbeIt in

replacement to its original local view.
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