
6 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E

Modeling user interfaces is a well-estab-
lished discipline in its own right. For example,
modeling techniques can describe interaction
objects,5 tasks,6 and lower-level dialogs in
user interfaces.7 For more than 10 years, re-
searchers have tried to build comprehensive
interface development environments that inte-
grate models for describing a user interface’s
different aspects. Many research projects
have addressed model-based user interface de-
velopment environments (MB-UIDEs)8 to
provide specialized models for describing user
interfaces. These models often include facili-
ties that produce interfaces that can run from
declarative descriptions of their behavior.9

Using models as part of user interface devel-
opment can help capture user requirements,
avoid premature commitment to specific lay-
outs and widgets, and make the relationships
between an interface’s different parts and their
roles explicit.

Although MB-UIDEs provide models that
effectively capture user interface functionality,
most proposals provide limited facilities for
modeling user interfaces along with an applica-
tion’s other aspects. For example, most MB-
UIDEs have a domain model that describes the
data over which the interface acts but provide
limited facilities for describing the functionality
of the application for which the interface is be-
ing constructed. Thus, MB-UIDEs are weak in
application modeling, an area of specialization
for UML. By using a modeling environment in
which application and interface designers de-
scribe models in terms of an integrated set of

feature
User Interface Modeling
in UMLi

A
lthough user interfaces represent an essential part of software
systems, the Unified Modeling Language seems to have been
developed with little specific attention given to user interface
issues. You can use standard UML to model important aspects

of user interfaces,1 but this often results in unwieldy and unnatural
representations.2–4

user inter faces

Object modeling languages rarely address user interface issues.
However, UMLi conservatively extends UML with explicit support
for interface modeling.

Paulo Pinheiro da Silva, Stanford University

Norman W. Paton, University of Manchester

notations, you can enhance communication be-
tween design team members.

Integrating application and
interface modeling facilities

Integrating UML’s application modeling fa-
cilities with MB-UIDE’s interface modeling
facilities might offer mutual benefits. Clearly,
grafting notations from one community into
the other’s context could easily lead to com-
plex and inelegant proposals in which inde-
pendently developed models share overlap-
ping capabilities and present users with
challenges such as when and how to use dif-
ferent notations.

The following principles can help integrate
user interface modeling facilities into UML:

� The integrated proposal should be unob-
trusive, retaining standard UML as a sub-
set in which existing constructs keep their
roles and semantics.

� The integrated proposal should support
the expectations of current UML modelers,
whose experience with UML should help
when using interface-specific extensions.

� The integrated proposal should support
the expectations of user interface modelers
who have experience using existing inter-
face-modeling techniques. Such users
should not feel they must design interfaces
with more limited facilities than the MB-
UIDEs provide.

� The integrated proposal should support
complete applications, so links between
user interface models and existing UML
models should be well-defined and close.

� The integrated proposal should introduce
as few new models into UML as possible.

Several researchers have investigated inte-
grating interface modeling techniques with
UML. For example, one approach assesses
UML models for use in interface modeling,
comparing them with a collection of specialist
interface modeling notations.2 Another ap-
proach suggests how you can use several UML
models—particularly, class diagrams and use-
case diagrams—along with task models for
user interface modeling.4 Another approach
lets you comprehensively model Web applica-
tions,10 but this approach is less conceptual
than the other proposals.

In UMLi, you model tasks using extended

activity diagrams rather than by incorporating
a completely new notation into UML. UMLi
also addresses the relationships between use
cases, tasks, and views, and thoroughly ad-
dresses the relationship between tasks and the
data on which they act. UMLi is probably the
most technically mature proposal for interface
development in UML. The UMLi metamodel
fully integrates with UML. And you can build
and integrate UMLi models with other UML
models in an extension to the ArgoUML
toolset.11 You can download the UMLi exten-
sion to ArgoUML from http://img.cs.man.ac.
uk/umli.

Overall, although the relationship between
UML and user interface modeling languages
has sparked growing interest, the field is open
to new proposals and ideas, especially because
no widely accepted solution for user interface
modeling in UML exists. This article examines
some of UML’s user interface modeling facili-
ties. Figure 1 shows the SearchBook inter-
face, an example of the sort of interface our
method supports. In this example, you can
provide a combination of a book’s properties
for querying a library database.

You can press the search and cancel but-
tons in the SearchBook interface at any time
when the interface is visible. You submit a
query by pressing the search button. The li-
brary application uses the parameters avail-
able in the interface when you press the search
button to build the query. The application
then displays the results for the last query sub-
mitted within the current session in the results
list. Pressing the cancel button quits the
SearchBook interface and returns you to the
main interface.

Modeling user interfaces
For many years, researchers have worked on

J u l y / A u g u s t 2 0 0 3 I E E E S O F T W A R E 6 3

Figure 1. A screen
shot of the SSeeaarrcchh--
BBooookk user interface.

developing abstract user interface descriptions
and have developed various models and nota-
tions, some of which are now used widely.12

Specialist interface developers have expectations
concerning different modeling facilities’ suitabil-
ity that general-purpose modeling techniques
might not satisfy. Interface developers use sev-
eral categories of models during development.
You can represent the information such models
capture using standard UML facilities.

Modeling interaction objects
A user interacts with a system through in-

teraction objects. Interaction objects are com-
monly classified as either abstract or concrete.
A concrete interaction object, any widget, is a
physical implementation of an abstract inter-
action object. For example, a menu and a
combo box are both concrete examples of an
abstract chooser interaction object because
menus and combo boxes let users select an

item from an offered collection. Most inter-
face builders (such as Microsoft Visual C++)
provide facilities for interactively selecting and
placing concrete interaction objects during in-
terface development. However, specifying spe-
cific concrete interaction object placement is
very much an implementation activity. And
specifying an interface using concrete interac-
tion objects risks premature commitment to a
specific look and feel.

Several research projects have tried to sup-
port both abstract and concrete interaction
objects. For example, the Trident project uses
production rules in selecting concrete interac-
tion objects from information on features such
as screen density, target user experience, and
required precision of input values.13 Because
you typically characterize interaction objects
by their stored properties and the operations
they support, you can use class diagrams in
their description. Figure 2 shows an abstract

6 4 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

ResultValues

11

Author

111

Results

InteractionClass

setVisible()
setActive()

PrimitiveInteractionClass

DisplayerInputter

Cancel OK

getValue()
setValue()

value

ActionInvoker

invokeAction()

Year

11

1

1

1

TitleAuthorParam YearParamTitleParam

Container

11

SearchBook

1

ButtonPanel

BookDetails

FreeContainer

ResultPanel

Whole-part compositions

Specializations

Figure 2. An abstract presentation model for the SSeeaarrcchhBBooookk interface. Numbers on associations
represent cardinality constraints.

description of the library search form from
Figure 1. In this abstract presentation model,
InteractionClass represents different
functions that typify those supported by con-
crete interaction objects in widely available
widget sets, and Container represents the
grouping of components and containers in an
interface.

You can represent a corresponding con-
crete presentation model as UML classes.
You might reverse-engineer a UML class di-
agram from an existing object-oriented
widget set, such as Java Swing, as a practical
option. You could then allocate concrete
widgets to support abstract components
with a UML framework, as described in Fig-
ure 3. In Figure 3, the class diagram in Fig-
ure 2 is the specification of the pattern rep-
resented by the SearchBook presentation
framework collaboration. You can bind con-
crete classes to abstract ones using the
SearchBook presentation framework.

You can represent important features of
both concrete and abstract presentations using
standard UML class diagrams. Additionally,
you can describe interaction objects’ associated
behavior using standard UML sequence or ac-
tivity diagrams. However, the interface de-
scription shown in Figure 2 doesn’t give much
of a feel for the functionality or organization of
the associated interface shown in Figure 1. In-
deed, representing interfaces using class dia-
grams can quickly become obscure, a problem
that has led to proposals for specialized ab-
stract presentation models for UML. UMLi
also provides specialized visualizations for ab-
stract presentation models. However, UMLi in-
terface diagrams are essentially UML class dia-
grams that clarify the purpose of individual
abstract components and the containment rela-
tionships between different components.

Modeling tasks
Providing abstract task descriptions is cen-

tral to most MB-UIDEs.14,15 You generally
represent a task model as a tree in which leaf
nodes are primitive tasks and nonleaf nodes
group and describe relationships between their
children nodes. The following features are
common to many task models:

� Hierarchical decomposition. High-level
tasks systematically decompose into less
abstract tasks.

� Temporal relationships. The order in
which a composite task’s children are car-
ried out depends on the parent’s temporal
relation.

� Primitive tasks. The lowest-level nodes de-
scribed in the task model are primitive
tasks. An action task, for example, corre-
sponds to an activity the application car-
ries out. An interaction task involves some
degree of human-computer interaction.

In practice, two schools of thought exist
concerning task models and their use. One
school holds that a task is a design artifact that
elicits goals and their subgoals. The other holds
that a task is a design artifact that describes the
execution of actions representing subgoals. By
performing such subgoals, users can achieve
their goals when interacting with the applica-
tion. In this second approach, tasks can de-
scribe actions, potentially to a precise level.

Whatever position you take, most re-
searchers accept the effectiveness of high-level

J u l y / A u g u s t 2 0 0 3 I E E E S O F T W A R E 6 5

<<cpm>>
Window

1 1

<<cpm>>
JComponent

<<cpm>>
Container

<<cpm>>
Frame

<<cpm>>
JTextfield

<<cpm>>
JPanel<<cpm>>

JFrame

<<cpm>>
FlowLayout

<<cpm>>
GridLayout

<<cpm>>
LayoutImplementation

<<cpm>>
JButton

<<cpm>>
JLabel

<<cpm>>

SearchBook
presentation
framework

Bindings to framework elements

Concrete presentation model

Container
FreeContainer

Inputter
ActionInvoker
Displayer

Container
Displayer

ActionInvoker
Inputter

FreeContainer

Whole-part compositions

Specializations

Figure 3. Using a UML framework to associate abstract
and concrete interaction objects. Numbers on associations
represent cardinality constraints.

task-modeling facilities as part of user inter-
face design. Moreover, most researchers inves-
tigating the extension of UML to support user
interface modeling propose some form of task
model. In UMLi, rather than directly incorpo-
rating a new task model, you can use activity
diagrams to model temporal relations along
the lines of those supported by task models.

Relationships between models
Two principal forms of relationship exist

between models in MB-UIDEs: the role of
models in interface design and the explicit re-
lationships between model components. The
first form indicates the order that models are
constructed and the way the population of one
model informs that of another. A design
method often supports this form of relation-
ship. The second form represents the relation-
ship between model components explicitly in
the models, which indicate the places where
responsibility for describing different aspects
of an application’s functionality passes from
one model to another.

Both forms of relationship contribute to a
design activity’s success, but we focus on the
second. MB-UIDEs typically describe the ap-
plication you’re constructing an interface for
using a domain model. You usually use a con-
ceptual database model, such as an entity-
relationship model or an object model, for the
domain model. You specify the links between

domain and task model concepts at an ab-
stract level in many MB-UIDEs. However, in
the UML setting, you can model the applica-
tion and the interface in a uniform setting, so
you should describe the relationships between
interface and application models precisely. We
see little evidence that other proposals for user
interface modeling in UML have addressed
this issue in detail for their interface exten-
sions to UML.

Modeling user interfaces in UMLi
Because you can model abstract and con-

crete interaction objects using class diagrams,
no particular need seems to exist to extend
UML’s representational facilities to describe
interface components. However, class dia-
grams don’t necessarily provide an intuitive
interface representation. UMLi provides an al-
ternative diagram notation for describing ab-
stract interaction objects. Figure 4 shows the
user interface diagram for the abstract presen-
tation model of the SearchBook interface in
Figure 2.

UMLi’s user interface diagram consists of
six constructors:

� FreeContainers rendered as dashed
cubes. A FreeContainer is a top-level
interaction class that no other interaction
class can contain.

� Containers rendered as dashed cylin-
ders. A Container is a mechanism that
groups interaction classes other than
FreeContainers.

� Inputters rendered as downward trian-
gles. An Inputter receives information
from users.

� Editors rendered as rhombi (not shown
in the diagram in Figure 4). An Editor
facilitates the two-way exchange of infor-
mation.

� Displayers rendered as upward trian-
gles. A Displayer sends information to
users.

� ActionInvokers rendered as right-
pointing arrows. An ActionInvoker re-
ceives direct instructions from users.

As Figure 4 shows, a user interface diagram
differs from an actual interface display. How-
ever, the notation indicates interaction classes’
grouping, containment, and purpose without
committing to look-and-feel or layout details.

6 6 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

Figure 4. The UMLi
user interface
diagram for book
searching.

The InteractionClass shown in Figure
2 is a subclass of the class constructor in the
UML metamodel. In fact, the classes in Figure 2
that represent the user interface diagram con-
structors—FreeContainer and Inputter—
are part of the UMLi metamodel. You can map
abstract interaction classes to concrete represen-
tations using different approaches, such as those
used in Trident13 or Teallach,14 in which each
abstract category associates with a collection of
concrete representations from different styles.

Modeling tasks in UMLi
Use cases and activities in UMLi represent

the notion of task, as it’s conceptualized in the
MB-UIDE community. Using use cases and
their scenarios, you can elicit user interface
functionalities required to let users achieve
their goals. Using activities, you can identify
possible ways to perform actions that support
the functionalities elicited using use cases.
Therefore, mapping use cases into top-level
activities can help describe a set of interface
functionalities similar to that described by
task models in other MB-UIDEs.

Use-case diagrams in UMLi are UML use-
case diagrams. Activity diagrams in UMLi,
however, extend activity diagrams in UML. In
fact, UMLi provides a notation for a set of
macros for activity diagrams that you can use

to model behavior categories usually observed
in user interfaces: optional, order-independent,
and repeatable behaviors. The Specify-
BookDetails activity shown in Figure 5 uses
the optional behavior, rendered as a circle
overlaying a minus symbol. There, you can ex-
ecute the activities getTitle, getAuthor,
and getYear—which are called the optional
behavior’s selectable activities—any number
of times, including none.

When needed, we render the order-inde-
pendent behavior as a circle overlaying a plus
symbol. Users interacting with the application
can activate selectable activities or order-inde-
pendent states on demand. Every selectable ac-
tivity should execute once during the perform-
ance of an order-independent behavior. We
render the repeatable behavior as a circle over-
laying a multiplication symbol. Unlike the
order-independent and optional behaviors, a
repeatable behavior should have only one as-
sociated activity. You can specify a specific
number of times that the associated activity
should execute.

Using these macro notations, activity dia-
grams in UMLi can cope better with the ten-
dency that activity diagrams have to become
complex even when modeling the behavior
of simple user interfaces. Moreover, these
notations might help interface modelers use

J u l y / A u g u s t 2 0 0 3 I E E E S O F T W A R E 6 7

Figure 5. An
activity diagram
that models
the SSeeaarrcchhBBooookk
user interface’s
behavior.

activity diagrams. In the case study, we used
the optional behavior to model the Search-
Book interface’s behavior, as Figure 5
shows. In the example, users can specify a
combination of a book’s title, author, and
year before finishing the optional selection
state using the Search ActionInvoker.
Leaving the optional selection state, the ap-
plication also leaves the SearchBookDe-
tails activity, which eventually results in
submitting the search query.

Relationships between models in UMLi
We use object flows in activity diagrams to

describe how to use class instances to perform
actions in action states. In fact, by using object
flows, you can incorporate the notion of state
into activity diagrams that are primarily used
for modeling behavior. In UMLi, you can also
use object flows to describe how to use interac-
tion class instances. However, object flow
states—rendered as dashed arrows connecting
objects to action states—have specific semantics
when associating interaction objects to activities
and action states. UMLi specifies categories of
object flow states specific to interaction objects:

� The <<interacts>> object flows relate
primitive interaction objects to action
states, which are primitive activities. They
indicate that associated action states are
responsible for interactions in which users
invoke object operations or visualize the
results of object operations.

� The <<presents>> object flows relate
FreeContainers to activities and spec-
ify that the associated FreeContainers
should be visible while the activities are
active.

� The <<confirms>> object flows relate
ActionInvokers to selection states and
specify that selection states have finished
normally.

� The <<cancels>> object flows relate
ActionInvokers to composite activities
or selection states and specify that activi-
ties or selection states have not finished
normally and that the application flow of
control should be rerouted to a previous
state.

� The <<activates>> object flows relate
ActionInvokers to other activities,
thereby triggering the associated activities
that start when an event occurs.

The activity diagram shown in Figure 5 ex-
emplifies the use of most of these object flows.
For instance, the SearchBook FreeCon-

tainer becomes visible and the Cancel Ac-
tionInvoker becomes active when the
SearchBook activity is active. Then you can
specify a book’s properties when the Search-
BookDetails activity becomes active. Because
the selection state in SearchBookDetails is
optional, the Search ActionInvoker is also
enabled for interaction when the Search-
BookDetails activity is active.

W e modeled a library system in both
UML and UMLi as a case study to
assess the benefits of using UMLi

to model an interactive system. The Search-
Book functionality described here is one of
that library system’s nine functionalities.16 We
produced two sets of files containing a textual
representation of the UML and UMLi models
using ArgoUMLi. The size of the textual rep-
resentations of the models and diagrams are
3.44 and 4.01 times higher in UML than in
UMLi. Size, however, doesn’t usually say
much about the difficulty of constructing an
interactive system model or of understanding
such models. By contrast, object-oriented de-
sign metrics can quantify the inherent difficul-
ties of constructing and understanding models
because they measure many dimensions of the
model’s complexity.

Measuring the metrics in the library sys-
tem’s models is straightforward. The major
concern regarding the use of these design met-
rics is producing models using two different
notations for a common set of properties from
the system’s specification. We therefore used a
systematic mapping strategy16 to ensure that
we adopted the same reuse strategy in both
models.

In terms of structural complexity, our study
demonstrated—by measuring and analyzing
the suite of Chidamber-Kemerer (CK) met-
rics17—that we can achieve reductions in
structural complexity in UMLi models. In par-
ticular, we achieved a significant reduction of
87 percent in Response For a Class—defined
as the number of methods executed in re-
sponse to a message received by an object of
that class—in UMLi models. Indeed, introduc-
ing the interaction object flow with its stereo-

Object-oriented
design metrics

can quantify
the inherent
difficulties of
constructing

and
understanding

models because
they measure

many
dimensions of
the model’s
complexity.

6 8 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

types has simplified action modeling related to
user interface widgets.

In terms of behavioral complexity, we
measured and analyzed McCabe’s cyclomatic
complexity18—defined as the number of deci-
sions (or predicates) specified in models plus
one—and found we achieved a considerable
reduction of 14 percent in cyclomatic com-
plexity in UMLi models. By introducing selec-
tion states, we simplified modeling of behavior
commonly observed in user interfaces. These
metric improvements indicate that construct-
ing and maintaining interactive system models
should be simpler and easier in UMLi than in
UML.

References
1. P. Pinheiro da Silva and N.W. Paton, “User Interface

Modeling with UML,” Information Modeling and
Knowledge Bases XII, H. Jaakkola, H. Kangassalo, and
E. Kawaguchi, eds., IOS Press, 2001, pp. 203–217.

2. P. Markopoulos and P. Marijnissen, “UML as a Repre-
sentation for Interaction Designs,” Proc. Australian
Conf. Computer-Human Interaction, CHISIG, 2000,
pp. 240–249.

3. N.J. Nunes and J. Falcão e Cunha, “Wisdom: A Soft-
ware Engineering Method for Small Software Develop-
ment Companies,” IEEE Software, vol. 17, no. 5,
Sept./Oct. 2000, pp. 113–119.

4. F. Paternò, “Towards a UML for Interactive Systems,”
Proc. 8th IFIP Working Conf. Eng. for Human-Computer
Interaction (EHC 01), Springer-Verlag, 2001, pp. 7–18.

5. F. Bodart and J. Vanderdonckt, “Widget Standardisation
through Abstract Interaction Objects,” Advances in Ap-
plied Ergonomics, USA Publishing, 1996, pp. 300–305.

6. S. Wilson and P. Johnson, “Bridging the Generation
Gap: From Work Tasks to User Interface Designs,”
Computer-Aided Design of User Interfaces, F. Bodart
and J. Vanderdonckt, eds., Namur Univ. Press, 1996,
pp. 77–94.

7. B.A. Myers et al., “The Amulet Environment: New
Models for Effective User Interface Software Develop-
ment,” IEEE Trans. Software Eng., vol. 23, no. 6, June
1997, pp. 346–365.

8. P.A. Szekely, “Retrospective and Challenges for Model-
Based Interface Development,” Computer-Aided Design
of User Interfaces, F. Bodart and J. Vanderdonckt, eds.,
Namur Univ. Press, 1996, pp. xxi–xliv.

9. C. Wiecha et al., “ITS: A Tool for Rapidly Developing
Interactive Applications,” ACM Trans. Information Sys-
tems, vol. 8, no. 3, July 1990, pp. 204–236.

10. J. Conallen, Building Web Applications with UML, Ad-
dison-Wesley, 2002.

11. J.E. Robbins, D.M. Hilbert, and D.F. Redmiles, “ARGO:
A Design Environment for Evolving Software Architec-
tures,” Proc. Int’l Conf. Software Eng. (ICSE 97), ACM
Press, 1997, pp. 600–601.

12. B.A. Myers, S.E. Hudson, and R.F. Pausch, “Past, Pre-
sent, and Future of User Interface Software Tools,”
ACM Trans. Computer-Human Interaction, vol. 7, no.
1, 2000, pp. 3–28.

13. J.Vanderdonckt and F. Bodart, “Encapsulating Knowl-
edge for Intelligent Automatic Interaction Object Selec-
tion,” Proc. Conf. Human Factors in Computing Sys-
tems (INTERCHI 93), ACM Press, 1993, pp. 424–429.

14. T. Griffiths et al., “A Model-Based User Interface De-

velopment Environment for Object Databases,” Inter-
acting with Computers, vol. 14, no. 1, Dec. 2001, pp.
31–68.

15. A.R. Puerta, “A Model-Based Interface Development
Environment,” IEEE Software, vol. 14, no. 4, July/Aug.
1997, pp. 40–47.

16. P. Pinheiro da Silva and N.W. Paton, Improving UML
Support for User Interface Design: A Metric Assessment
of UMLi, tech. report KSL-02-04, Knowledge Systems
Lab., Stanford Univ., Stanford, Calif., 2002.

17. S.R. Chidamber and C.F. Kemerer, “A Metric Suite for
Object-Oriented Design,” IEEE Trans. Software Eng.,
vol. 20, no. 6, 1994, pp. 476–493.

18. T.J. McCabe and C.W. Butler, “Design Complexity
Measurement and Testing,” Comm. ACM, vol. 32, no.
12, Dec. 1989, pp. 1415–1425.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

J u l y / A u g u s t 2 0 0 3 I E E E S O F T W A R E 6 9

About the Authors

Paulo Pinheiro da Silva is a postdoctoral fellow at Stanford University. His research
interests include conceptual modeling methodologies and tools and languages for modeling
and verifying software systems. He is working on the development of tools for the Semantic
Web. He received a PhD in computer science from the University of Manchester. Contact him at
pp@ksl.stanford.edu; www.ksl.stanford.edu/people/pp.

Norman W. Paton is a professor of computer science and colead of the Information
Management Group at the University of Manchester. His research interests include active, spa-
tial, and deductive object-oriented databases and user interfaces to databases. He is working
on spatiotemporal databases, distributed information systems, grid data management, and in-
formation management for bioinformatics. He has a PhD in computing science from Aberdeen
University. Contact him at norm@cs.man.ac.uk; www.cs.man.ac.uk/~norm.

We’d like to
hear from
you

SEND US EMAIL AT

@computer.org

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

