
 

Abstract 
Knowledge based systems (KBSs) should explain 
their answers if their users are expected to under-
stand and thus trust the answers. Problem solvers, 
KBSs implementing problem solving methods 
(PSMs), should also explain their answers. Few 
KBS systems, however, are effective at explaining 
their answers either because they cannot systemati-
cally generate explanations or, when they can, their 
explanation components cannot easily be extended 
to new kinds of tasks. In this paper we present an 
approach enabling problem solvers to explain their 
answers in a systematic way. To generate proofs 
for their answers, the approach relies on the fact 
that problem solvers can retrieve and reuse their 
PSMs. To generate explanations automatically the 
approach relies on the Inference Web infrastruc-
ture. The approach is implemented for a deployed 
problem solver tool using explanations to train po-
lice teams to perform resource allocation for public 
safety.    

1 Introduction 
Problem-solving methods (PSM) are patterns describing 
how to use reasoning steps to solve knowledge-intensive 
tasks such as planning, scheduling, diagnosis, design and 
assessment. PSMs are expected to contain reasoning step 
descriptions generic enough to solve tasks independently of 
application domains (Fensel & Benjamins, 1998). In the 
context of this paper, problem solver systems are knowl-
edge-based systems (KBSs) using PSMs to solve tasks. 
Thus, if problem solver users, software agents and humans, 
need to understand solver answers then users may need to 
understand the PSM reasoning processes to understand and 
thus believe the answers.  Some existing KBSs are capable 
of explaining their answers (e.g., Buchaman & Shortliffe, 
1984; Clancey, 1986; Swartout, 1983; Chandrasekaran, 
1986; Richards, 2000; Shankar & Musen, 1998). Few sys-
tems, however, are able to provide explanations for answers 
from their PSM implementations. Some KBSs can generate 
explanations based on generic tasks or meta-rules but we are 
not aware of any that provide a systematic way to generate 
explanations of PSM implementations.   

In the work described in this paper, we are using PSMs to 
support the development of KBSs by using the Unified 
Problem-Solving Method Description Language (UPML) 
(Fensel et al., 2003). UPML-based KBS development 
makes KBS reasoning processes explicit by implementing 
PSMs as part of the applications. Thus, the access to PSMs 
at explanation-time can be used by UPML-based KBSs to 
explain their answers. In fact, by using UPML patterns, one 
can enhance the quality of explanations abstracting away 
task-specific reasoning steps from proofs and keeping rele-
vant information for understanding answers.  
The definition of an automatic approach for explaining KBS 
executions both at the strategic level and at the domain level 
is a major goal in this work. The explanation strategy de-
scribed in this paper is based on Inference Web (IW), an 
infrastructure for Web explanations enabling applications to 
generate portable and distributed explanations for any of 
their answers (McGuinness & Pinheiro da Silva, 2004). This 
paper introduces some extensions to the Inference Web in-
frastructure enabling IW tools to explain answers from 
UPML-based KBSs. The new UPML explanation compo-
nent can generate proofs for KBS answers in the Proof 
Markup Language (PML) format (Pinheiro da Silva, 
McGuinness & Fikes, 2004).  Thus, proof fragments in 
PML can be shared with other applications, besides using 
the IW’s infrastructure to abstract proofs into explanations 
and to present proofs and explanations to users. 
The rest of the paper is organized as follows. In Section 2, 
we discuss various approaches for KBS explanations. In 
Section 3, we revisit the UPML framework and introduce 
the UPML explanation component for the Inference Web 
responsible for generating PML documents. In Section 4 we 
describe how IW uses PML documents to explain PSM an-
swers. In Section 5, we describe how our approach was used 
to explain a public safety problem solver decisions. Finally, 
in Section 6, we summarize our current contributions and 
discuss future work. 

2 Explaining Knowledge Based System An-
swers 

Moore (1995) defines some criteria to be observed in expla-
nation systems including extensiveness, which indicates that 
explanation facilities must be easily extendable in order to 
cope with new demands and information needs. To meet the 
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extensiveness criterion, we claim that a KBS explanation 
framework must be able to explain most kinds of knowl-
edge-intensive tasks whether that involves the KBS use of 
many PSMs or a single PSM. 
Explanations for KBS have appeared as a significant and 
independent topic of study since MYCIN (Buchaman & 
Shortliffe, 1984) was developed. For explaining a diagnosis, 
MYCIN follows the trace of rules answering “why” and 
“how” questions. In the project GUIDON (Clancey, 1986) 
identified that most of the knowledge necessary to explain 
the behavior of the system, as for example, the reasoning 
strategy for diagnosis, was not explicitly represented in the 
knowledge base.  NEOMYCIN (Clancey, 1986) contributed 
to explanation research in KBSs by using an explicit repre-
sentation for problem resolution strategies and by using 
meta-rules in explanation planning. By using meta-rules, 
NEOMYCIN separated the domain ontology from 
MYCIN’s rules. This separation allowed NEOMYCIN to be 
more usable as an explanation infrastructure; however it was 
specific to MYCIN in terms of problem solving and domain 
representation.  
XPLAIN (Swartout, 1983) represented general problem-
solving knowledge using explicit models to produce a gen-
eral description of the system’s reasoning. Also, 
Chandrasekaran (1986) proposed KBS explanations through 
the use of Generic Tasks.  There, each subtask contains 
knowledge for explaining its execution that contributes to 
the entire system explanation. In both XPLAIN and 
Chandrasekaran’s approaches for explanation, the exten-
siveness criterion is satisfied although the knowledge for 
explaining a reasoning strategy is separated from the KBS 
knowledge base.  
The use of Ripple Down Rules (RDRs) (Richards,2000) 
presents a new paradigm for KBS explanation providing 
users with enough information about the circumstances in 
which a rule was applied and the relationship of the rule 
with others. RDRs provide a structure that allows explana-
tions of why an answer was obtained and which values 
could be modified to reach another answer. RDR is a tech-
nique for acquisition and representation of knowledge that 
uses a case-based reasoning approach, providing contextual-
ized knowledge. RDR provides only cases as representation 
for explanation which is a domain-specific representation. 
RDR’s tools, like browsers, line diagrams, concept matrix 
are specific for this knowledge representation technique and 
this approach was applied only in classification tasks. 
Therefore, it is not trivial to extend the RDR approach to 
other knowledge-intensive tasks such as design.  
WOZ (Shankar & Musen, 1998) is a framework for explain-
ing component-based decision-support systems.  The 
framework is composed of:  (i) a functional component re-
sponsible for the reasoning process (problem-solving) and 
data recovery; (ii) cooperative visualization agents associ-
ated with each functional component and responsible for 
explanation presentation and user interaction through 
graphical user interfaces (GUI).  Agents interact with other 
agents and components to provide adequate explanations 
according to the user characteristics gathered by the agents; 

(iii) a system program called Director who intermediates 
interactions among agents in accordance with the Explana-
tion Strategy;  (iv) application domain models such as user 
model, agent model and explanation strategy. WOZ incor-
porates some of the major trends in software engineering 
including explicit models, multi-agent architectures, and 
visualizations. Although WOZ meets the extensiveness cri-
terion its explanation strategy may not be scalable since a 
new situation-action mapping specification must be devel-
oped for each application, and building and maintenance can 
be laborious.   

3 The UPML Explanation Component 
Our approach to explain KBS answers integrates UPML and 
Inference Web. The approach benefits from UPML ad-
vances in knowledge modeling as well as the semantic 
web’s OWL language (W3C, 2004). Our use of the Proof 
Markup Language for dumping proofs supports the interop-
erability of distributed applications sharing proofs and pro-
vides explanations about the reasoning process embedded in 
PSMs.  
Our approach uses but also favors reuse of components be-
cause we are proposing generic components for explanation, 
which are reused by UPML PSMs. Thus, UPML-based 
KBSs can deploy proofs in PML as justifications for their 
answers. 

3.1 The UPML framework 
The UPML framework supports KBS modeling from reus-
able components, adapters, development guidelines, a de-
scription language and tools. The UPML architecture de-
scribes the different software components of a KBS: 

• a task defining the problem that should be solved by 
the KBS;  

• a problem-solving method defining KBS reasoning 
processes;  

• a domain model describing the KBS domain knowl-
edge;  

• an ontology providing the terminology used in the 
other components;  

• a bridge for each distinct pair of KBS components 
modeling relationships between components;  

• a refiner specializing a KBS component. 
KBS development effort is reduced through reuse. More-
over, the growing library of generic UPML components 
eases the development of KBSs for other tasks.  For exam-
ple, Pinheiro, Furtado & Furtado (2004) describe a set of 
UPML generic components implemented in Java including 
the abstract-and-match PSM used for assessment tasks as 
described in (Schreiber et al., 2000). Basically, the Ab-
stractMatch java class implements the PSM reasoning proc-
ess through a control structure that is responsible for se-
quencing the subtasks. The class extends the PSMCompo-
nent class containing generic methods for executing the 



 
Domain-PSM and Task-PSM mapping. These mappings are 
responsible for the knowledge role communication among 
UPML components, and also for the execution of subtasks 
related to the PSM. The knowledge roles defined for the 
abstract-and-match PSM are the following: case description, 
criteria to be evaluated, abstraction rules, evaluation rules 
and decision rules. The KBS developer needs to define 
these domain-specific knowledge roles and to use the API 
generic method to define the mappings. The development of 
a KBS for assessment tasks using the UPML components in 
any domain can thus reuse the PSM implementation leaving 
developers with the task of implementing domain-specific 
classes. 
The ExpertCop System (Furtado & Vasconcelos, 2004) is a 
UPML-based KBS example performing an assessment task 
implemented by the abstract-and-match PSM. In Expert-
Cop’s decision-making process, a criminal agent must 
evaluate data gathered from a geo-simulated environment 
using a set of criteria to decide whether it should commit a 
crime. This simulation process is used to train police about 
when and where crimes are likely to be committed. The task 
reasoning process defines a control structure executing the 
following subtasks sequentially: (i) abstract that simplifies 
the case data; (ii) specify that finds criteria relevant to the 
case data; (iii) select that selects one criterion for evaluation; 
(iv) evaluate that evaluates the select criterion with respect 
to the case data; (v) match that checks whether the criteria 
that were evaluated lead to a decision. The select, evaluate 
and match subtasks are interactively executed for each crite-
rion until a decision can be found or the criteria set is ex-
hausted. 
Risk level, opportunity and crime level are examples of cri-
teria evaluated by criminal agents. For example, the risk 
level criterion can be evaluated against police officer prox-
imity, population density, place safety rate, and public illu-
mination data. In turn, the police officer proximity w.r.t. 
criminals is encoded using the following discrete values:  
“close”, “medium” and “far”. Discrete values are used since 
this matches criminal evaluations more closely than con-
tinuous values.  The abstract subtask uses the following heu-
ristic:  “the proximity of the police officer is ‘close’ if the 
value is below 300 meters”. For a 280 meters value, the 
abstract subtask simplifies the police officer proximity to 
“close”. The specify subtask finds the following criteria for 
the case: risk level, opportunity, crime level. The select sub-
task selects criteria for the evaluate subtask, one criterion a 
time. After each evaluation, the match subtask checks if the 
criteria value leads to a decision.  

3.2 A UPML Component for the Inference Web 
In this section we introduce an UPML Explanation compo-
nent responsible for the generation of PSM proofs in PML. 
With the help of IW tools and PML documents it is possible 
to explain PSM reasoning processes. The explanation com-
ponent interacts with the PSM and Task Model components 
but not with the Domain Model. Thus, explanations are not 
domain-specific and they can be reused for other PSMs. 
The Explanation Component contains the following classes: 

• The ProofGeneration class used for building proof 
steps from parameters received from UPML’s PSM 
and Task and for using the parameters as variable 
bindings in answer’s proof tree.  This component is 
also used for encoding the current state of some PSM 
variables as sentences in Knowledge Interchange 
Format (KIF). 

• The Proof class represents a step in a proof.  Each step 
is identified by a conclusion and a set of antecedents.  
A proof step conclusion can be either derived or told.  
If the conclusion is derived then the class keeps in-
formation about the inference rule used to derive the 
conclusion, e.g., generalized modus ponens (GMP), 
and information about the step premises.  If the con-
clusion is asserted directly from a source, e.g. it is 
stated in an ontology, then the class keeps information 
about the source. To identify the inference engine 
generating a proof step, we have created a relationship 
between this class and its subclasses such as 
PSMProof, JEOPSProof, JESSProof, etc.  In a single 
proof tree generated by the ProofGeneration class, it 
is possible to represent inference steps generated by 
multiple inference engines such as JEOPS (Figueira 
Filho & Ramalho, 2000) or JESS (JESS, 2005), and 
inference steps generated by the PSM control struc-
ture itself that may be considered as a meta-annotation 
for the proofs. 

• For each proof tree in ProofGeneration, the Handler 
class is responsible for mapping proof trees into node 
sets and for generating PML documents.  

4 Using the UPML Explanation Component 
A KBS can access its PSM and Task components from the 
UPML component library. The PSM component imple-
ments the control structure responsible for the coordination 
of subtasks within tasks. For each subtask execution, the 
PSMComponent class responsible for calling subtasks in-
vokes the explanation component methods that encode sub-
task queries into PML queries. Each subtask implements a 
specific functionality inside the reasoning process, either by 
means of a rule execution or via an algorithm. If an infer-
ence engine processes a rule, the engine encodes the rule 
applications as a proof steps in PML.  Otherwise, the sub-
task implementation is that should call the Explanation 
component methods for generating proof steps in PML. The 
conclusions of PML node sets directly associated with que-
ries correspond to query answers. In accordance with the 
task execution sequence within PSMs, several pairs of 
query-and-answer-sets may be generated until final conclu-
sions for the PSM are reached.  By using the explanation 
component, the problem solver encodes the queries, an-
swers, and answer proofs in PML documents. Furthermore, 
the problem solver embeds the PSM control structure in the 
sequence of queries. In fact, proof trees extracted from PML 



node sets represent the order of the execution of the PSM 
subtasks and the inference steps on rules in the domain 
knowledge base. The PML encoding of queries and answers 
are generated from generic UPML components and infer-
ence engines. Therefore, the UPML explanation component 
as presented here can be reused in any UPML-based KBS 
Figure 1 shows an abstract and concrete level view of an 
example as well as a detailed view 1of the IWBrowser while 
presenting PML documents from the ExpertCop System. At 
the abstract level, the browser shows the PSM reasoning 
process representing each abstract-and-match PSM reason-
ing steps as an oval. The diagram describes the PSM control 
structure as follows: the abstract, specify, select, evaluate 
and match subtasks are executed in this order, but the select, 
evaluate and match subtasks may be executed iteratively 
until a decision is made or all the criteria are evaluated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
.   
At the concrete level, the diagram shows additional details 
about the PSM reasoning process. One or more queries are 
executed in support of PSM subtasks and they are presented 
along with the reasoning steps allowing the browser to show 
the queries corresponding to each subtask. Further, by se-
lecting a query, a user can ask the browser to show query 
answers and their proofs thus exposing how proof steps are 
performed against facts in the underlying knowledge base. 
For example, the Figure 1 concrete level shows a situation 

                                                 
1 Note that other views of the explanation are possible includ-

ing abstractions, natural language presentations, etc. 

where two criteria are evaluated - risk and danger. The ex-
planation component generates two queries to the evaluate 
subtask: (valueRisk ?valR) asking “what is the value for the 
Risk criterion?”, and (valueDanger ?valD) asking “what is 
the value for the Danger criterion?”. The evaluate subtask 
then tries to apply an evaluation rule to facts in the KBS 
knowledge base to answer the query. By selecting the query 
(valueRisk ?valR), the browser presents a justification for 
the fact that valueRisk is high rendered as “(valueRisk 
high)”. The fact is encoded in a PML node set conclusion 
and each inference step in the node set corresponds to a fact 
justification. When rendering the fact justification, the 
browser shows that the answer, through an application of 
the GMP inference rule, was inferred from the following 
facts:  

• (policedistance ?crimeSituation 300) 
• (density  ?crimeSituation 15) 
• (selected ?risk true) 

and the axiom  
• ( <= (valueRisk high) 

        (and (density crimeSituation ?z) 
                (> ?z 10) 
                (policeDistance ?crimeSituation ?m) 
                (< ?m 501) 
                (selected ?risk true))) 

 
The facts and axiom above are in KIF. The axiom represents 
an evaluation rule in the system and the facts may be told or 
derived. The ExpertCop concludes that valueRisk is high. 

5 Explaining ExpertCop Answers 

5.1 ExpertCop Domain Model 
The UPML Framework with the new explanation compo-
nent has been used in the ExpertCop System project to de-
velop a decision-making process KBS for a criminal agent. 
The system is based on a criminal geo-simulation system 
modeled for a specific region. This system uses the Multi-
Agent Systems (MAS) technology to simulate social envi-
ronments. In the project, the KBS developers reused UPML 
generic components, the explanation component, and the 
classes implementing the abstract-and-match PSM. Devel-
opers implemented the following domain classes:  

• CrimeSituation representing data about the environ-
ment at the moment of the assessment of the criteria. 

• CriterionCrime representing criteria to be evaluated 
such as risk level, opportunity, crime level, criminal 
danger, etc. 

• DecisionCrime representing the following possible de-
cisions: “the criminal does commit the crime” and 
“the criminal does not commit the crime”.  

• AbstractionRules representing rules for abstracting 
case data. For example, to abstract the distance be-
tween a police officer and a selected point in the geo-
simulated system as ‘close’, ExpertCop uses the fol-

Figure 1. An example of explanation diagram from abstract-
and-match PSM
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lowing abstraction rule: “if distance < 300 meters then 
police officer distance is ‘close’”. 

• EvaluationRules representing rules for evaluating 
available criteria. For example, ExpertCop has the fol-
lowing evaluation rule for the risk level criterion: “if 
police officer distance is close then risk of committing 
a crime is high”. 

• DecisionRules representing rules for making a decision 
for the case. For example, ExpertCop uses the follow-
ing decision rule: “if risk is high then decision is to 
not commit a crime”. 

These classes represent the domain knowledge and are in-
stantiated in the application and mapped to the PSM ontol-
ogy. The domain knowledge gathered from a knowledge 
acquisition process with expert police personnel who know 
which criteria a typical criminal uses when deciding 
whether to commit a crime. 

5.2 ExpertCop Explanations 
Through the reuse of UPML components, the KBS imple-
ments an executable criminal decision-maker.  Users have 
the option of asking for explanations of the decisions.  Ex-
planations are enabled because the decision process is en-
coded in PML documents.  These documents contain infor-
mation concerning the queries and answers along with the 
reasoning steps, domain criteria, and domain rules used in 
the decision process.  
Explanations expose the reasoning process used by the 
criminal when deciding whether to commit the crime. Ex-
pertCop uses this input to induce a critical analysis and pro-
vides recommendations for increasing or decreasing the 
levels of police surveillance and placement aimed at im-
proving police effectiveness.  
ExpertCop can explain why crimes did or did not happen.  It 
can also answer follow-up questions such as “how was the 
Risk evaluated?” or “what is Risk?” Figure 2 shows the Ex-
pertCop system interface composed by a map where crimes 
are plotted. The figure also shows an example of an expla-
nation at a concrete level after a user selection on the map. 
For each selected place, ExpertCop identifies whether 
crimes occurred and allows users to request explanations. 
The first explanation in Figure 2 shows the criminal agent 
decision “to commit the crime” because it knows that crimes 
are committed if the risk level is “medium”, opportunity 
level is “medium”, the danger level is “medium” and finan-
cial compensation is “medium”. The user requests a follow-
up explanation about why the risk level was evaluated to be 
“medium”. The system responds that the risk level is me-
dium because the police officer proximity is “far”, the place 
population density is “medium”, and the public illumination 
is “good”. The user requests a second follow-up explanation 
about why the police officer proximity is “far”. The answer 
was that the criminal knows that if the police distance is 
greater than 500 meters then the police proximity is classi-
fied as “far” and in the current situation, the police officer 
distance is 808 meters.  

 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The explanations were derived from the PML node sets and 
rendered as a hypertext. The first explanation was generated 
from the node set concluding the abstract-and-match PSM 
decision subtask. The explanation presents the assertions 
used as premises to derive PSM answers. When premises 
are also derived, they are presented as a hyperlink for users 
to request further explanations drilling down through a 
proof tree branch. It is worth noting that the UPML explana-
tion framework enabled us to provide an explanation com-
ponent for ExpertCop quite easily.  In particular, it was not 
hard to encode the PSM reasoning steps in PML.  This re-
sult goes beyond ExpertCop and we claim it applies to all 
UPML-based KBSs.  

Figure 2.  The ExpertCop interface and an example of expla-
nation to the user   



6 Conclusion  
In this paper, we addressed the issue that problem solvers 
need explanation components.  This need is enhanced when 
problem solvers are automatically generated, scalable or 
built for extensibility. Our approach integrates the UPML 
architecture for KBS development and the Inference Web 
infrastructure for web explanations. We extended UPML 
and Inference Web through a new generic component, the 
UPML-based explanation component, which is responsible 
for the generation of PML documents encoding reasoning 
processes embedded in problem-solving methods and tasks.  
We identify two major contributions of this work. The first 
is the definition of an approach for providing explanations 
about the execution of KBSs both at the abstract level and at 
the concrete level that can be applied in other domains.  We 
described how the explanation component was used to gen-
erate explanations from the abstract-and-match component.  
Although not described in this paper, we also implemented 
explanations for the propose-and-revise PSMs in a laptop 
configuration domain. These PSMs can be used in KBSs for 
assessment and configuration design tasks. The generality of 
our solution is at the PSM level since the subtasks know 
how to invoke the explanation component methods in a sys-
tematical way and PSMs can be reused in any domain. 
Thus, UPML-based KBSs can generate proofs and explana-
tions about their reasoning process and domain knowledge.  
The second contribution is the use of PML for dumping 
proofs therefore enabling proof and explanation interopera-
bility between distributed problem solvers. The focus of this 
work is to supply explanations of problem solvers execution 
to users, human or software agents.  The use of PML allows 
the sharing of the problem solver explanations with software 
agents. PML proofs are not aimed at human consumption.  
Therefore, we intend to advance this work in the develop-
ment of explanatory text generation components that pro-
duce human-readable KBS explanations from PML proofs. 
The goal is to project some pragmatic principles of linguis-
tic interactions onto the semantic structures of the PML 
proofs in order to select the information to be conveyed to 
users, to simplify proof steps and to reorganize proofs.  
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