

Abstract
Knowledge based systems (KBSs) should explain
their answers if their users are expected to under-
stand and thus trust the answers. Problem solvers,
KBSs implementing problem solving methods
(PSMs), should also explain their answers. Few
KBS systems, however, are effective at explaining
their answers either because they cannot systemati-
cally generate explanations or, when they can, their
explanation components cannot easily be extended
to new kinds of tasks. In this paper we present an
approach enabling problem solvers to explain their
answers in a systematic way. To generate proofs
for their answers, the approach relies on the fact
that problem solvers can retrieve and reuse their
PSMs. To generate explanations automatically the
approach relies on the Inference Web infrastruc-
ture. The approach is implemented for a deployed
problem solver tool using explanations to train po-
lice teams to perform resource allocation for public
safety.

1 Introduction
Problem-solving methods (PSM) are patterns describing
how to use reasoning steps to solve knowledge-intensive
tasks such as planning, scheduling, diagnosis, design and
assessment. PSMs are expected to contain reasoning step
descriptions generic enough to solve tasks independently of
application domains (Fensel & Benjamins, 1998). In the
context of this paper, problem solver systems are knowl-
edge-based systems (KBSs) using PSMs to solve tasks.
Thus, if problem solver users, software agents and humans,
need to understand solver answers then users may need to
understand the PSM reasoning processes to understand and
thus believe the answers. Some existing KBSs are capable
of explaining their answers (e.g., Buchaman & Shortliffe,
1984; Clancey, 1986; Swartout, 1983; Chandrasekaran,
1986; Richards, 2000; Shankar & Musen, 1998). Few sys-
tems, however, are able to provide explanations for answers
from their PSM implementations. Some KBSs can generate
explanations based on generic tasks or meta-rules but we are
not aware of any that provide a systematic way to generate
explanations of PSM implementations.

In the work described in this paper, we are using PSMs to
support the development of KBSs by using the Unified
Problem-Solving Method Description Language (UPML)
(Fensel et al., 2003). UPML-based KBS development
makes KBS reasoning processes explicit by implementing
PSMs as part of the applications. Thus, the access to PSMs
at explanation-time can be used by UPML-based KBSs to
explain their answers. In fact, by using UPML patterns, one
can enhance the quality of explanations abstracting away
task-specific reasoning steps from proofs and keeping rele-
vant information for understanding answers.
The definition of an automatic approach for explaining KBS
executions both at the strategic level and at the domain level
is a major goal in this work. The explanation strategy de-
scribed in this paper is based on Inference Web (IW), an
infrastructure for Web explanations enabling applications to
generate portable and distributed explanations for any of
their answers (McGuinness & Pinheiro da Silva, 2004). This
paper introduces some extensions to the Inference Web in-
frastructure enabling IW tools to explain answers from
UPML-based KBSs. The new UPML explanation compo-
nent can generate proofs for KBS answers in the Proof
Markup Language (PML) format (Pinheiro da Silva,
McGuinness & Fikes, 2004). Thus, proof fragments in
PML can be shared with other applications, besides using
the IW’s infrastructure to abstract proofs into explanations
and to present proofs and explanations to users.
The rest of the paper is organized as follows. In Section 2,
we discuss various approaches for KBS explanations. In
Section 3, we revisit the UPML framework and introduce
the UPML explanation component for the Inference Web
responsible for generating PML documents. In Section 4 we
describe how IW uses PML documents to explain PSM an-
swers. In Section 5, we describe how our approach was used
to explain a public safety problem solver decisions. Finally,
in Section 6, we summarize our current contributions and
discuss future work.

2 Explaining Knowledge Based System An-
swers

Moore (1995) defines some criteria to be observed in expla-
nation systems including extensiveness, which indicates that
explanation facilities must be easily extendable in order to
cope with new demands and information needs. To meet the

Explaining Problem Solver Answers

Vladia Pinheiro1 Vasco Furtado1 Paulo Pinheiro da Silva2 Deborah L. McGuinness2
1 Universidade de Fortaleza, Fortaleza, CE, Brazil

vladiacelia@terra.com.br, vasco@unifor.br
2 Knowledge Systems Laboratory, Stanford University, Stanford, CA, USA

{pp,dlm}@ksl.stanford.edu

extensiveness criterion, we claim that a KBS explanation
framework must be able to explain most kinds of knowl-
edge-intensive tasks whether that involves the KBS use of
many PSMs or a single PSM.
Explanations for KBS have appeared as a significant and
independent topic of study since MYCIN (Buchaman &
Shortliffe, 1984) was developed. For explaining a diagnosis,
MYCIN follows the trace of rules answering “why” and
“how” questions. In the project GUIDON (Clancey, 1986)
identified that most of the knowledge necessary to explain
the behavior of the system, as for example, the reasoning
strategy for diagnosis, was not explicitly represented in the
knowledge base. NEOMYCIN (Clancey, 1986) contributed
to explanation research in KBSs by using an explicit repre-
sentation for problem resolution strategies and by using
meta-rules in explanation planning. By using meta-rules,
NEOMYCIN separated the domain ontology from
MYCIN’s rules. This separation allowed NEOMYCIN to be
more usable as an explanation infrastructure; however it was
specific to MYCIN in terms of problem solving and domain
representation.
XPLAIN (Swartout, 1983) represented general problem-
solving knowledge using explicit models to produce a gen-
eral description of the system’s reasoning. Also,
Chandrasekaran (1986) proposed KBS explanations through
the use of Generic Tasks. There, each subtask contains
knowledge for explaining its execution that contributes to
the entire system explanation. In both XPLAIN and
Chandrasekaran’s approaches for explanation, the exten-
siveness criterion is satisfied although the knowledge for
explaining a reasoning strategy is separated from the KBS
knowledge base.
The use of Ripple Down Rules (RDRs) (Richards,2000)
presents a new paradigm for KBS explanation providing
users with enough information about the circumstances in
which a rule was applied and the relationship of the rule
with others. RDRs provide a structure that allows explana-
tions of why an answer was obtained and which values
could be modified to reach another answer. RDR is a tech-
nique for acquisition and representation of knowledge that
uses a case-based reasoning approach, providing contextual-
ized knowledge. RDR provides only cases as representation
for explanation which is a domain-specific representation.
RDR’s tools, like browsers, line diagrams, concept matrix
are specific for this knowledge representation technique and
this approach was applied only in classification tasks.
Therefore, it is not trivial to extend the RDR approach to
other knowledge-intensive tasks such as design.
WOZ (Shankar & Musen, 1998) is a framework for explain-
ing component-based decision-support systems. The
framework is composed of: (i) a functional component re-
sponsible for the reasoning process (problem-solving) and
data recovery; (ii) cooperative visualization agents associ-
ated with each functional component and responsible for
explanation presentation and user interaction through
graphical user interfaces (GUI). Agents interact with other
agents and components to provide adequate explanations
according to the user characteristics gathered by the agents;

(iii) a system program called Director who intermediates
interactions among agents in accordance with the Explana-
tion Strategy; (iv) application domain models such as user
model, agent model and explanation strategy. WOZ incor-
porates some of the major trends in software engineering
including explicit models, multi-agent architectures, and
visualizations. Although WOZ meets the extensiveness cri-
terion its explanation strategy may not be scalable since a
new situation-action mapping specification must be devel-
oped for each application, and building and maintenance can
be laborious.

3 The UPML Explanation Component
Our approach to explain KBS answers integrates UPML and
Inference Web. The approach benefits from UPML ad-
vances in knowledge modeling as well as the semantic
web’s OWL language (W3C, 2004). Our use of the Proof
Markup Language for dumping proofs supports the interop-
erability of distributed applications sharing proofs and pro-
vides explanations about the reasoning process embedded in
PSMs.
Our approach uses but also favors reuse of components be-
cause we are proposing generic components for explanation,
which are reused by UPML PSMs. Thus, UPML-based
KBSs can deploy proofs in PML as justifications for their
answers.

3.1 The UPML framework
The UPML framework supports KBS modeling from reus-
able components, adapters, development guidelines, a de-
scription language and tools. The UPML architecture de-
scribes the different software components of a KBS:

• a task defining the problem that should be solved by
the KBS;

• a problem-solving method defining KBS reasoning
processes;

• a domain model describing the KBS domain knowl-
edge;

• an ontology providing the terminology used in the
other components;

• a bridge for each distinct pair of KBS components
modeling relationships between components;

• a refiner specializing a KBS component.
KBS development effort is reduced through reuse. More-
over, the growing library of generic UPML components
eases the development of KBSs for other tasks. For exam-
ple, Pinheiro, Furtado & Furtado (2004) describe a set of
UPML generic components implemented in Java including
the abstract-and-match PSM used for assessment tasks as
described in (Schreiber et al., 2000). Basically, the Ab-
stractMatch java class implements the PSM reasoning proc-
ess through a control structure that is responsible for se-
quencing the subtasks. The class extends the PSMCompo-
nent class containing generic methods for executing the

Domain-PSM and Task-PSM mapping. These mappings are
responsible for the knowledge role communication among
UPML components, and also for the execution of subtasks
related to the PSM. The knowledge roles defined for the
abstract-and-match PSM are the following: case description,
criteria to be evaluated, abstraction rules, evaluation rules
and decision rules. The KBS developer needs to define
these domain-specific knowledge roles and to use the API
generic method to define the mappings. The development of
a KBS for assessment tasks using the UPML components in
any domain can thus reuse the PSM implementation leaving
developers with the task of implementing domain-specific
classes.
The ExpertCop System (Furtado & Vasconcelos, 2004) is a
UPML-based KBS example performing an assessment task
implemented by the abstract-and-match PSM. In Expert-
Cop’s decision-making process, a criminal agent must
evaluate data gathered from a geo-simulated environment
using a set of criteria to decide whether it should commit a
crime. This simulation process is used to train police about
when and where crimes are likely to be committed. The task
reasoning process defines a control structure executing the
following subtasks sequentially: (i) abstract that simplifies
the case data; (ii) specify that finds criteria relevant to the
case data; (iii) select that selects one criterion for evaluation;
(iv) evaluate that evaluates the select criterion with respect
to the case data; (v) match that checks whether the criteria
that were evaluated lead to a decision. The select, evaluate
and match subtasks are interactively executed for each crite-
rion until a decision can be found or the criteria set is ex-
hausted.
Risk level, opportunity and crime level are examples of cri-
teria evaluated by criminal agents. For example, the risk
level criterion can be evaluated against police officer prox-
imity, population density, place safety rate, and public illu-
mination data. In turn, the police officer proximity w.r.t.
criminals is encoded using the following discrete values:
“close”, “medium” and “far”. Discrete values are used since
this matches criminal evaluations more closely than con-
tinuous values. The abstract subtask uses the following heu-
ristic: “the proximity of the police officer is ‘close’ if the
value is below 300 meters”. For a 280 meters value, the
abstract subtask simplifies the police officer proximity to
“close”. The specify subtask finds the following criteria for
the case: risk level, opportunity, crime level. The select sub-
task selects criteria for the evaluate subtask, one criterion a
time. After each evaluation, the match subtask checks if the
criteria value leads to a decision.

3.2 A UPML Component for the Inference Web
In this section we introduce an UPML Explanation compo-
nent responsible for the generation of PSM proofs in PML.
With the help of IW tools and PML documents it is possible
to explain PSM reasoning processes. The explanation com-
ponent interacts with the PSM and Task Model components
but not with the Domain Model. Thus, explanations are not
domain-specific and they can be reused for other PSMs.
The Explanation Component contains the following classes:

• The ProofGeneration class used for building proof
steps from parameters received from UPML’s PSM
and Task and for using the parameters as variable
bindings in answer’s proof tree. This component is
also used for encoding the current state of some PSM
variables as sentences in Knowledge Interchange
Format (KIF).

• The Proof class represents a step in a proof. Each step
is identified by a conclusion and a set of antecedents.
A proof step conclusion can be either derived or told.
If the conclusion is derived then the class keeps in-
formation about the inference rule used to derive the
conclusion, e.g., generalized modus ponens (GMP),
and information about the step premises. If the con-
clusion is asserted directly from a source, e.g. it is
stated in an ontology, then the class keeps information
about the source. To identify the inference engine
generating a proof step, we have created a relationship
between this class and its subclasses such as
PSMProof, JEOPSProof, JESSProof, etc. In a single
proof tree generated by the ProofGeneration class, it
is possible to represent inference steps generated by
multiple inference engines such as JEOPS (Figueira
Filho & Ramalho, 2000) or JESS (JESS, 2005), and
inference steps generated by the PSM control struc-
ture itself that may be considered as a meta-annotation
for the proofs.

• For each proof tree in ProofGeneration, the Handler
class is responsible for mapping proof trees into node
sets and for generating PML documents.

4 Using the UPML Explanation Component
A KBS can access its PSM and Task components from the
UPML component library. The PSM component imple-
ments the control structure responsible for the coordination
of subtasks within tasks. For each subtask execution, the
PSMComponent class responsible for calling subtasks in-
vokes the explanation component methods that encode sub-
task queries into PML queries. Each subtask implements a
specific functionality inside the reasoning process, either by
means of a rule execution or via an algorithm. If an infer-
ence engine processes a rule, the engine encodes the rule
applications as a proof steps in PML. Otherwise, the sub-
task implementation is that should call the Explanation
component methods for generating proof steps in PML. The
conclusions of PML node sets directly associated with que-
ries correspond to query answers. In accordance with the
task execution sequence within PSMs, several pairs of
query-and-answer-sets may be generated until final conclu-
sions for the PSM are reached. By using the explanation
component, the problem solver encodes the queries, an-
swers, and answer proofs in PML documents. Furthermore,
the problem solver embeds the PSM control structure in the
sequence of queries. In fact, proof trees extracted from PML

node sets represent the order of the execution of the PSM
subtasks and the inference steps on rules in the domain
knowledge base. The PML encoding of queries and answers
are generated from generic UPML components and infer-
ence engines. Therefore, the UPML explanation component
as presented here can be reused in any UPML-based KBS
Figure 1 shows an abstract and concrete level view of an
example as well as a detailed view 1of the IWBrowser while
presenting PML documents from the ExpertCop System. At
the abstract level, the browser shows the PSM reasoning
process representing each abstract-and-match PSM reason-
ing steps as an oval. The diagram describes the PSM control
structure as follows: the abstract, specify, select, evaluate
and match subtasks are executed in this order, but the select,
evaluate and match subtasks may be executed iteratively
until a decision is made or all the criteria are evaluated.

.
At the concrete level, the diagram shows additional details
about the PSM reasoning process. One or more queries are
executed in support of PSM subtasks and they are presented
along with the reasoning steps allowing the browser to show
the queries corresponding to each subtask. Further, by se-
lecting a query, a user can ask the browser to show query
answers and their proofs thus exposing how proof steps are
performed against facts in the underlying knowledge base.
For example, the Figure 1 concrete level shows a situation

1 Note that other views of the explanation are possible includ-

ing abstractions, natural language presentations, etc.

where two criteria are evaluated - risk and danger. The ex-
planation component generates two queries to the evaluate
subtask: (valueRisk ?valR) asking “what is the value for the
Risk criterion?”, and (valueDanger ?valD) asking “what is
the value for the Danger criterion?”. The evaluate subtask
then tries to apply an evaluation rule to facts in the KBS
knowledge base to answer the query. By selecting the query
(valueRisk ?valR), the browser presents a justification for
the fact that valueRisk is high rendered as “(valueRisk
high)”. The fact is encoded in a PML node set conclusion
and each inference step in the node set corresponds to a fact
justification. When rendering the fact justification, the
browser shows that the answer, through an application of
the GMP inference rule, was inferred from the following
facts:

• (policedistance ?crimeSituation 300)
• (density ?crimeSituation 15)
• (selected ?risk true)

and the axiom
• (<= (valueRisk high)

 (and (density crimeSituation ?z)
 (> ?z 10)
 (policeDistance ?crimeSituation ?m)
 (< ?m 501)
 (selected ?risk true)))

The facts and axiom above are in KIF. The axiom represents
an evaluation rule in the system and the facts may be told or
derived. The ExpertCop concludes that valueRisk is high.

5 Explaining ExpertCop Answers

5.1 ExpertCop Domain Model
The UPML Framework with the new explanation compo-
nent has been used in the ExpertCop System project to de-
velop a decision-making process KBS for a criminal agent.
The system is based on a criminal geo-simulation system
modeled for a specific region. This system uses the Multi-
Agent Systems (MAS) technology to simulate social envi-
ronments. In the project, the KBS developers reused UPML
generic components, the explanation component, and the
classes implementing the abstract-and-match PSM. Devel-
opers implemented the following domain classes:

• CrimeSituation representing data about the environ-
ment at the moment of the assessment of the criteria.

• CriterionCrime representing criteria to be evaluated
such as risk level, opportunity, crime level, criminal
danger, etc.

• DecisionCrime representing the following possible de-
cisions: “the criminal does commit the crime” and
“the criminal does not commit the crime”.

• AbstractionRules representing rules for abstracting
case data. For example, to abstract the distance be-
tween a police officer and a selected point in the geo-
simulated system as ‘close’, ExpertCop uses the fol-

Figure 1. An example of explanation diagram from abstract-
and-match PSM

upml:
abstract

upml:
specify

upml:
select

upml:
evaluate

upml:
match

(dan-
gerLeve
l ?d)

(specRisk
?specR)

(specDanger
?specD) (selectDanger

?selD)

(selectRisk
?selR)

(valueDanger
?valD)

(valueRisk
?valR) (decision

?dec)

ABSTRACT LEVEL

CONCRETE LEVEL

lowing abstraction rule: “if distance < 300 meters then
police officer distance is ‘close’”.

• EvaluationRules representing rules for evaluating
available criteria. For example, ExpertCop has the fol-
lowing evaluation rule for the risk level criterion: “if
police officer distance is close then risk of committing
a crime is high”.

• DecisionRules representing rules for making a decision
for the case. For example, ExpertCop uses the follow-
ing decision rule: “if risk is high then decision is to
not commit a crime”.

These classes represent the domain knowledge and are in-
stantiated in the application and mapped to the PSM ontol-
ogy. The domain knowledge gathered from a knowledge
acquisition process with expert police personnel who know
which criteria a typical criminal uses when deciding
whether to commit a crime.

5.2 ExpertCop Explanations
Through the reuse of UPML components, the KBS imple-
ments an executable criminal decision-maker. Users have
the option of asking for explanations of the decisions. Ex-
planations are enabled because the decision process is en-
coded in PML documents. These documents contain infor-
mation concerning the queries and answers along with the
reasoning steps, domain criteria, and domain rules used in
the decision process.
Explanations expose the reasoning process used by the
criminal when deciding whether to commit the crime. Ex-
pertCop uses this input to induce a critical analysis and pro-
vides recommendations for increasing or decreasing the
levels of police surveillance and placement aimed at im-
proving police effectiveness.
ExpertCop can explain why crimes did or did not happen. It
can also answer follow-up questions such as “how was the
Risk evaluated?” or “what is Risk?” Figure 2 shows the Ex-
pertCop system interface composed by a map where crimes
are plotted. The figure also shows an example of an expla-
nation at a concrete level after a user selection on the map.
For each selected place, ExpertCop identifies whether
crimes occurred and allows users to request explanations.
The first explanation in Figure 2 shows the criminal agent
decision “to commit the crime” because it knows that crimes
are committed if the risk level is “medium”, opportunity
level is “medium”, the danger level is “medium” and finan-
cial compensation is “medium”. The user requests a follow-
up explanation about why the risk level was evaluated to be
“medium”. The system responds that the risk level is me-
dium because the police officer proximity is “far”, the place
population density is “medium”, and the public illumination
is “good”. The user requests a second follow-up explanation
about why the police officer proximity is “far”. The answer
was that the criminal knows that if the police distance is
greater than 500 meters then the police proximity is classi-
fied as “far” and in the current situation, the police officer
distance is 808 meters.

The explanations were derived from the PML node sets and
rendered as a hypertext. The first explanation was generated
from the node set concluding the abstract-and-match PSM
decision subtask. The explanation presents the assertions
used as premises to derive PSM answers. When premises
are also derived, they are presented as a hyperlink for users
to request further explanations drilling down through a
proof tree branch. It is worth noting that the UPML explana-
tion framework enabled us to provide an explanation com-
ponent for ExpertCop quite easily. In particular, it was not
hard to encode the PSM reasoning steps in PML. This re-
sult goes beyond ExpertCop and we claim it applies to all
UPML-based KBSs.

Figure 2. The ExpertCop interface and an example of expla-
nation to the user

6 Conclusion
In this paper, we addressed the issue that problem solvers
need explanation components. This need is enhanced when
problem solvers are automatically generated, scalable or
built for extensibility. Our approach integrates the UPML
architecture for KBS development and the Inference Web
infrastructure for web explanations. We extended UPML
and Inference Web through a new generic component, the
UPML-based explanation component, which is responsible
for the generation of PML documents encoding reasoning
processes embedded in problem-solving methods and tasks.
We identify two major contributions of this work. The first
is the definition of an approach for providing explanations
about the execution of KBSs both at the abstract level and at
the concrete level that can be applied in other domains. We
described how the explanation component was used to gen-
erate explanations from the abstract-and-match component.
Although not described in this paper, we also implemented
explanations for the propose-and-revise PSMs in a laptop
configuration domain. These PSMs can be used in KBSs for
assessment and configuration design tasks. The generality of
our solution is at the PSM level since the subtasks know
how to invoke the explanation component methods in a sys-
tematical way and PSMs can be reused in any domain.
Thus, UPML-based KBSs can generate proofs and explana-
tions about their reasoning process and domain knowledge.
The second contribution is the use of PML for dumping
proofs therefore enabling proof and explanation interopera-
bility between distributed problem solvers. The focus of this
work is to supply explanations of problem solvers execution
to users, human or software agents. The use of PML allows
the sharing of the problem solver explanations with software
agents. PML proofs are not aimed at human consumption.
Therefore, we intend to advance this work in the develop-
ment of explanatory text generation components that pro-
duce human-readable KBS explanations from PML proofs.
The goal is to project some pragmatic principles of linguis-
tic interactions onto the semantic structures of the PML
proofs in order to select the information to be conveyed to
users, to simplify proof steps and to reorganize proofs.

References
 [Buchanan & Shortliffe, 1984] Buchanan, B.G. and

Shortliffe, E.H. Rule based expert systems: The MYCIN
experiments of the Stanford Heuristic Programming Pro-
ject, Addison-Wesley, Reading, MA, 1984.

[Clancey, 1986] Clancey, W.J. From GUIDON to
NEOMYCIN and HERACLES in Twenty Short Les-
sons: ORN Final Report 1979-1985, AI Magazine, 7(3),
pp. 40-60, 1986.

[Chandrasekaran, 1986] Chandrasekaran, B. Generic Tasks
in Knowledge-Based Reasoning: High-Level Building
Blocks. IEEE Expert 1(3), pp. 23-30, 1986.

[Fensel & Benjamins, 1998] Fensel, D. and Benjamins,
V.R., Key Issues for Automated Problem-Solving Meth-

ods Reuse.13th European Conference on Artificial Intel-
ligence, ECAI98, Wiley & Sons Pub, 1998.

[Fensel at al., 2003] Fensel, D. et al., The Unified Problem-
Solving Method Development Language UPML.
Knowledge and Information Systems, An International
Journal, 5, 83-127, 2003.

[Figueira Filho & Ramalho, 2000] Figueira Filho, C. and
Ramalho, G. Jeops – The Java Embedded Object Pro-
duction System. IBERAMIA-SBIA 2000. LNAI 1952,
Berlin: Springer-Verlag, 2000.

[Furtado & Vasconcelos, 2004] Furtado, V., Vasconcelos,
E.. Geosimulation in education: The ExpertCop System.
Proc. of Agent-based Simulation Workshop, SCS Euro-
pean Publisher, Lisbon, 2004

[JESS, 2005] http://herzberg.ca.sandia.gov/jess, as available
on January 17th, 2005.

[McGuinness & Pinheiro da Silva, 2003] Deborah L.
McGuinness and Paulo Pinheiro da Silva. Infrastructure
for Web Explanations. In Proceedings of 2nd Interna-
tional Semantic Web Conference (ISWC2003), D.
Fensel, K. Sycara and J. Mylopoulos (Eds.), LNCS
2870, Sanibel Is., FL, USA. Springer, pages 113-129,
October 2003.

[Moore, 1995] Moore, J.D. Participating in Explanatory
Dialogues: Interpreting and Responding to Questions In
Context. Cambridge, MA, MIT Press, 1995.

[Pinheiro, Furtado & Furtado, 2004] Pinheiro, V., Furtado,
E. and Furtado, V. A Unified Architecture to Develop
Interactive Knowledge Based Systems. In proceedings of
17th Brazilian Symposium of Artificial Intelligence
(SBIA 2004), Bazzan, Ana L.C. e Labidi, S. (Eds),
LNAI 3171, São Luís, MA, Brasil, Springer-Verlag, pp
174-183, 2004.

[Pinheiro da Silva et al., 2004] Paulo Pinheiro da Silva,
Deborah L. McGuinness and Richad Fikes. A Proof
Markup Language for Semantic Web Services. Techni-
cal Report KSL-04-01, Knowledge Systems Laboratory,
Stanford University, USA, 2004.

[Richards, 2000] Richards, D. User-Centred and Driven
Knowledge-Based Systems for Clinical Support using
Ripple Down Rules. Proceedings of the 33rd Hawaii In-
ternational Conference on System Sciences, 2000.

[Schreiber et al, 2000] Schreiber et al., Knowledge Engi-
neering and Management: The CommonKADS Method-
ology. The MIT Press. Cambridge, MA, 2000.

[Shankar & Musen, 1998] Shankar, R.D., TU, S.W., Musen,
M.A. A Declarative Explanation Framework That Uses a
Collection Of Visualization Agents. Stanford Medical
Institute, Stanford University School of Medicine, Stan-
ford, CA, 1998.

[Swartout, 1983] Swartout, W.R. XPLAIN: A system for
Creating and Explaining Expert Consulting Programs,
Artificial Intelligence, 21(3), pp.285-325, 1983.

[W3C, 2004] http://www.w3.org/2001/sw/WebOnt/

