
Towards Checking Hybrid Proofs

Paulo Pinheiro da Silva
�

Patrick J. Hayes
�

Deborah L. McGuinness
�

Richard Fikes
�

Priyendra Deshwal
�

�
Knowledge Systems Laboratory, Stanford University

Stanford, CA 94305, USA.
e-mail:

�
pp,dlm,fikes,deshwal � @ksl.stanford.edu�

Institute for Human and Machine Cognition
Pensacola, FL 32502

e-mail: phayes@ihmc.us

Abstract

The distributed and heterogeneous nature of today’s ap-
plications such as the Web implies that a variety of agents
may participate in answering questions. Since multiple
agents with various reasoning methods and representation
languages are possible, inference rules used to derive any
particular answer may be quite diverse. In this paper we in-
troduce the Inference Meta Language to represent inference
rules in an abstract and uniform way. The language may be
used to annotate proofs enabling them to be automatically
checked. Checking may be critical if systems combine an-
swers, i.e., web service composition. We have implemented
a parser and checker for the language and it is in use in
several proof-based explanation solutions.

1 Introduction

Distributed, hybrid applications such as those found on
the web often use information from other agents and ser-
vices to produce their own answers. These applications may
need input information to be accompanied by proof infor-
mation if they are going to accept and trust a result produced
by an unfamiliar service. For example, if a user or applica-
tion has a reason to suspect that an answer may not be reli-
able, we would like to enable the user or application to in-
spect information about how the answer was obtained. Fur-
ther, the application may want to actually check the proof
to determine at least that the agents involved with the proof
generation are not working incorrectly. Obtaining informa-
tion that a proof is not incorrect will not necessarily guar-
antee a correct answer, but an incorrect proof will definitely
increase an application’s suspicion about the answer. In or-

der to check proofs, proof checkers need to understand and
use the proof format; proofs need to identify the inference
rule applied in each proof step; and proof checkers need to
have information that enables them to check the identified
inference rules. By using a common proof format such as
the Proof Markup Language (PML) [17] or PDS [5] proof
checkers can understand and use proofs. In order for proof
checkers to check an inference rule application, they either
need to be familiar with the rule or they need to have access
to a specification of the rule they are supposed to check.

As a simple example, consider an application that will
depend on answers from the Wine Agent [10]. The appli-
cation may know very little about the Wine Agent and thus
it would like to know if information that the wine agent de-
rived is something that it should suspect. For example, the
Wine Agent might claim that TonysSpeciality is a seafood
dish and it is appropriately paired with a particular white
wine. The application might want to know how the applica-
tion determined that TonysSpeciality was a seafood dish.
This could have been simply told to the wine agent (in
which case the application might want to know information
about what source stated this (e.g., [18]) and if that source is
viewed as trusted (e.g., [20])), it might have been the result
of an extraction engine (in which case the application might
want to know what raw sources were used, what extraction
inferences were used (e.g., [15]) and if they were applied
correctly, etc.) and it might have been the result of applica-
tions of standard first order logic reasoning inferences, for
example, applied by the JTP hybrid reasoning system [6]. In
the last case, the application might also want to know what
inferences were applied, which reasoners applied them, if
those inferences were applied correctly.

In this paper, we address the issue of helping applications
evaluate if inference rules were applied correctly in individ-

ual applications and in hybrid applications - those that use
more than one agent to obtain an answer. A proof checker
that already has an understanding of the inference rules that
it will be asked to verify could do a portion of this task. Our
work also enables proof checkers to access specifications of
new inference rules so that they may also check for correct-
ness of these new rules. This specification of inference rules
also enables additional features such as explanations of an-
swers and combinations of partial answers from multiple
agents, etc. Beyond simple access to the inference rules, we
would like to have a way of describing the inference rules
in a declarative manner so that agents and humans can bet-
ter understand the rules and can recognize patterns in the
rules in order to facilitate abstraction and combination. The
work described in this paper presents an approach for spec-
ifying inference rules for checking hybrid proofs. The work
is developed in the context of the Inference Web (IW) [12],
which is an infrastructure for explaining answers from web
applications and services. Inference Web uses PML, as its
interlingua for distributed, hybrid proofs. PML can be used
to represent the information agents need to understand re-
sults and the justifications of those results.

The rest of the paper is organized as follows: Sec-
tion 2 describes the Proof Markup Language used in this
paper to encode hybrid proofs. Section 3 introduces the
InferenceML language specification used to annotate hy-
brid proofs with inference rule specifications. Section 4 de-
scribes an infrastructure for specifying, maintaining and us-
ing inference rules as proof meta-information. Section 5 de-
scribes the use of InferenceML rule specifications to check
their correct applications in PML proofs. Section 6 de-
scribes related notation developments for declarative speci-
fications of rules. Section 7 summarizes the main contribu-
tions of InferenceML in the paper.

2 Hybrid Proofs

PML allows question answering systems to encode
proofs of their answers and to use answers from other ques-
tion answering systems by combining proofs. A proof is
said to be hybrid if parts of the proofs are produced by
distinct agents. In terms of PML concepts, the proofs are
described as collections of NodeSets connected by Infer-
enceSteps. A NodeSet represents a step in a proof whose
conclusion is justified by all of the inference steps associ-
ated with the NodeSet. Note that there may be multiple
ways to justify any one statement and each of those may be
represented by an inference step associated with the Node-
Set. An InferenceStep represents a justification for the con-
clusion of a node set. PML specifies the syntactic condi-
tions under which a set of PML documents representing
proofs is well-formed. One important requirement for hav-
ing a well-formed set of PML documents is that inference

steps must be correct applications of inference rules on in-
ference step premises. The next section introduces the In-
ference Meta Language (InferenceML) for describing infer-
ence rules since PML itself does not require one particular
language. Thus, an inference step may point to a rule entry
in a metadata repository, as describe in Section 4.1, where
tools can access the rule specification and the language used
to specify the rule. This is intended to provide a way for
rules to be declaratively represented and communicated, so
that PML proofs can be checked for compliance against a
set of rules.

3 The Meta Language for Inference Rules

InferenceML is designed to be general-purpose in the
sense that a variety of proof rule forms can be represented.
For simplicity we require that the rules are stated with re-
spect to a fixed logical language. We have chosen Simpli-
fied Common Logic (SCL)1 as our logical notation. SCL is
a modern successor to KIF [7] and provides a convenient,
expressive language for our needs. The current standard se-
mantic web languages and varieties of first-order logic can
be translated into SCL.

3.1 SCL Schemas

An inference rule involves a general pattern of transfor-
mations on expressions, whereby parts of expressions are
rearranged, potentially normalized and expanded, to pro-
duce a conclusion. InferenceML uses schemas to state
such transformations. We define a schema to be a pat-
tern, which is any expression of SCL in which some lexi-
cal items of a certain grammatical category (typically things
like Sent(ence), Name, Rel(ation symbol) etc.) have been
replaced by a schematic variable (or meta-variable), paired
with a set of syntactical conditions, which record the cor-
responding type of each meta-variable (and possibly other
conditions, described later). So, an SCL schema has the
general form

pattern ;; syntax-conditions

where

� the pattern is an SCL expression with schematic vari-
ables. (InferenceML also uses several other categories
of meta-variable, noted below.) In order to distin-
guish schematic variables from SCL text in a pattern,
we enclose literal SCL text in single quotes and leave
schematic variables unquoted. This syntax is intended
to indicate any piece of SCL core syntax text that can
be obtained by substituting suitable lexical items for

1http://cl.tamu.edu/docs/scl/scl-latest.html

the schematic variables and concatenating the frag-
ments in the order shown. Note that whitespace dif-
ferences are ignored at the lexical syntax level. By
convention, schematic variables must start with an al-
phabetic character and are written in lower case.

Typically, rules involve applying substitutions to
schematic variables. A substitution is a mapping from
schematic variables to expressions of the appropriate
type - more generally, which satisfies the syntactic con-
ditions - and is represented by a list of pairs of variable,
expression (e.g., � ���) (or by a schematic variable of the
type substitution as discussed in Section 3.4.) A sub-
stitution applied to an expression in a pattern is repre-
sented by a pair of square brackets following the ex-
pression and embracing the substitution. For example,��� � ���	� is a substitution applied to � with

�
substituted

for � wherever � occurs in

� the syntax-conditions are specialized expressions spec-
ifying the types of the schematic variables. These are
written in the SCL core syntax using a special vocabu-
lary, but the meta-variables are treated as normal vari-
ables.

For example,

’(implies’ p q ’)’;; (Sent p q)

is a schema that matches any SCL implication sentence.
Here, � and
 are schematic variables for SCL sentences.
The syntax condition predicate Sent takes any number of
arguments and is true exactly when the arguments are sen-
tences.

3.2 List Notation

When stating rules it is often necessary to consider
sequences of expressions, and SCL syntax is based on
sequencing. We therefore allow another class of meta-
variables that range over finite sequences, or lists, of expres-
sions. For simplicity, we only allow sequences in which ev-
ery expression has the same syntactic type, e.g. sequences
of sentences or lists of terms. We use the simple but ad-
equate convention that meta-variables starting with upper-
case letters indicate expression sequences, while those start-
ing with a lower-case letter indicate single expressions.
Note that sequences have the structure of “flattened” lists,
so that a single-element sequence can be identified with its
single member, and concatenation is an associative opera-
tion that can be identified with LISP consing. InferenceML
uses use infix “ � ” as the concatenation operator and “ � ”
as a binary sequence-difference operator. In addition, the
infix dot notation acts as a selector, so that “
���� ” refers to
the 2nd item in the sequence
 . The use of a variable name

after the dot indicates an arbitrary element in the sequence.
This use of variables over integers is the third kind of meta-
variable used in the InferenceML pattern syntax. The nota-
tion “ ����������
�� ” indicates the cardinality or number of ele-
ments in the sequence. The empty sequence has cardinality
zero and can be indicated by the notation “ � � ”. With these
conventions, for example, “ ����� ” indicates a sequence with
two elements, “ � �!� ” a sequence with at least one element
and “ � �"�#�$�#� � � � ” is � .

Using the list notation, we can specify new kinds of SCL
schemas. For example,

’(and’ N ’)’ ;; (Sent N)

is a schema that matches any conjunctive sentence in SCL.
Conditions may be specified using this sequence vocab-

ulary, together with equality and other operations defined
later, to state conditions that must be satisfied by the sen-
tences involved in a rule. In general, syntax conditions can
be viewed as computable conditions on bindings to meta-
variables, and so any computable operation on SCL syntax
or numerals is potentially usable in an InferenceML syntax
condition. While we anticipate that InferenceML will be ex-
tended as needed by adding user-defined syntax conditions,
the condition vocabulary described in this paper seems to
be adequate to describe a wide variety of inference rules in
existing logics.

3.3 Rule Schema

In InferenceML compliant PML documents, a proof is a
structure (not quite a tree) generated by rules that have the
general form:

premise-list %&� conclusion ;; syntax-conditions

where premise-list is a sequence of premises, separated by
semi-colons, each of which is specified by a pattern and may
be followed by an optional discharged assumption, written
inside square brackets

premise [, discharged assumption] ; ... ; premise,
discharged assumption

and conclusion is also a pattern, and the syntax conditions
apply to the whole rule. The following example

ndUQ: ’(forall (’ N ’)’ q ’)’ %'� ’(forall
(’ N - N.i ’)’ q[t/N.i] ’)’;; (Name N) (Sent q)
(Term t)

is a rule schema for any SCL natural deduction universal
quantification (ndUQ). To check that the following rule is a
correct application of ndUQ:

(forall (a b c) d) %'� (forall (a
c) d[’foo’/b])

it is sufficient to note a binding of expressions to the
schematic variables that maps the schema to the rule while
satisfying the syntactic conditions:

��� binds to � � ��� �
��� binds to �
�
 binds to �
�
�

binds to ���	�

which satisfies the syntax conditions; and then the rule
schema instantiates directly to:

(forall (a b c) d) %'� (forall
(a b c) - (a b c).2 d[’foo’/
(a b c).2])

which in turn becomes the desired rule when the Infer-
enceML meta-notation is suitably evaluated following the
equations � � �
� � � ��� � and � � � �
� �$� � � �
� � � ���
� � ��� � :

(forall (a b c) d) %'� (forall (a
c) d[’foo’/b])

3.4 Syntax Conditions

Grammatical Categories

Grammatical categories for variables in SCL schema pat-
terns are specified by predicates that correspond to, or can
be defined using, SCL grammatical categories.

� Sent(ence) is an SCL grammatical category;

� Atom(ic sentence) is an SCL grammatical category;

� Lit(eral) is an atom or a sentence of the form ’(not’
x ’)’ where (Atom x);

� Name is a variable when it occurs inside a quantifier
that binds it;

� Term is an SCL grammatical category.

Unification Functions

The classical rule of modus ponens is easy to describe using
the vocabulary defined so far:

ndMP: p; ’(implies’ p q ’)’ %&� q ;; (Sent p q)

However, the more general rule modus ponens with uni-
fication (MPwU) requires us to introduce a new idea since
its statement refers to a unifier:

MPwU: p; ’(implies’ r q ’)’ %'� q[s] ;; (Sent p
q) (= s mgu(p,r))

In MPwU, � is a new schematic variable ranging over sub-
stitutions. A substitution is a mapping from variables to
terms. The substitution notation [� ���] already used denotes
instances of such variables.

InferenceML takes as primitive the most general simulta-
neous unifier function mgsu(). This takes as arguments two
lists � and � of expressions and returns as value the most
general substitution � such that � � � � � � ��� � � � � � for each �
in the range ������� ����� ��� ��� , if it exists. If � and � have
different lengths then the result is undefined. The use of this
function in a syntax condition asserts that the function is de-
fined. The binary most general unifier of two expressions is
the special case of mgsu() when its arguments are singleton
sequences.

The following proof shows why the mgsu() is a useful
primitive:

GMP: A; ’(implies (and’ A ’)’ q ’)’ %&� q
;; (Sent L q)

is an SCL proof schema for generalized modus ponens that
allows an arbitrary number of premises. Thus, the following
proof schema

GMPwU: A; ’(implies (and’ B ’)’ q ’)’ %&�
q[s] ;; (Sent A B q) (= s mgsu(A,B)) (= card(A)
card(B))

is an SCL proof schema for generalized modus ponens with
unification that corresponds to MPwU for GMP. Here, � is
defined over lists of sentences,
 and � , rather than over
a pair of sentences. Notice that if the antecedents are not
unifiable then the schema does not apply.

Normal Form Sentences

Many inference engines normalize the sentences in proofs
before applying their inference rules. InferenceML schema
can impose normal-form conditions by referring to gram-
matical categories and using schema description patterns
directly in the description of the syntax conditions. For ex-
ample, the following proof

BiRes: ’(or’ A ’)’, ’(or’ B ’)’ %'� ’(or’ A +
B - A.i - B.j ’)’ ;; (Lit A B) (= A.i ’(not’ B.j’)’)

is an SCL proof schema for bi-resolution applied to clauses
represented in SCL as disjunctions of literals.

3.5 Sentence Discharge

The following proof

ndImplIntro: p, [q] %&� ’(implies ’ q p ’)’ ;;
(Sent p q)

shows that
 was discharged in order to introduce the impli-
cation in the proof schema conclusion. Moreover, the proof
shows that
 was an assumption for
 . For natural deduction
or-elimination we have the following:

ndOrElim: ’(or’ p q ’)’ ; r, [p]; r, [q] %'� r ;;
(Sent p q r)

where � is an assumption for the first � premise while the

is an assumption for the other � premise.

3.6 InferenceML Specifications in XML

The notation presented so far is the human-friendly ver-
sion of InferenceML. In fact, the rules specifications pre-
sented in this paper show that even complex rules such as
GMPwU and ndOrElim can be shortly represented in In-
ferenceML. Considering the Semantic Web use of Infer-
enceML, for example, rule specifications can also be rep-
resented in XML. For example, the InferenceML specifica-
tion for ndUQ introduced in Section 3.3 can be represented
in XML as follows:

<infml:Rule name="ndUQ">
<infml:Premise syntax="scl">

(forall (
<infml:var type="nameList">

N
</infml:var>)
<infml:var type="sentence">

q
</infml:var>

)
</infml:Premise>
<infml:Conclusion syntax="scl">

(forall (
<infml:op type="removeItemFromList">

<infml:var>N</infml:var>
<infml:op type="selectItemInList">

<infml:var>N</infml:var>
<infml:var type="index">

i
</infml:var>

</infml:op>
</infml:op>

)
<infml:op type="instantiate"

<infml:var> q </infml:var>
<infml:substitution>

<infml:var type="term">
t

</infml:var>
<infml:op type="selectItemInList">
<infml:var>N</infml:var>
<infml:var>i</infml:var>
</infml:op>

</infml:substitution>
</infml:op>
)

</infml:Conclusion>
</infml:Rule>

Premises and conclusions are patterns written in the syn-
tax form indicated. Then all patterns are SCL syntax writ-
ten as body text, with marked-up � infml:var � and
� infml:op � items in it, each with a property indicat-
ing type. Properties are the grammatical categories of Infer-
enceML as described in Section 3.4 with a distinction, at the
XML level, between single elements (i.e., Term) and lists
(i.e., TermList). For example, the statement � infml:var
type=‘‘SentenceList’’ � N � /infml:var � says
that � is a SentenceList. Meta-operations are expected to
be applied during matching of the pattern to a rule. Meta-
operators such as � � � � � are handled by special markup,
consisting of operators applied to arguments as in the fol-
lowing example:

<infml:op type="removeItemFromList">
<infml:var>N</infml:var>
<infml:op type="selectItemInList">

<infml:var>N</infml:var>
2

</infml:op>
</infml:op>

4 Infrastructure for Checking Hybrid Proofs

Inference Web supports the registration of multiple lan-
guages for representing expressions and expression speci-
fications. Section 4.1 describes how InferenceML expres-
sions can be used to specify inference rules registered in a
repository of proof-related meta-data. In order to use In-
ferenceML in proofs where expressions are written in lan-
guages other than SCL, Section 4.2 describes the Inference
Web support for translation rules.

4.1 InferenceML Specification of Rules in IWBase

When presenting a typical proof, an engine may state
which inference rule was applied to some premises to infer
the proof conclusion. Premises and conclusions are main
elements of proofs that are connected by inference rules ap-
plied to premises producing conclusions. Typical proofs,
however, rarely include rule specification information.

Meta-information can be used to enhance proofs. In the
Inference Web, IWBase [13] is a distributed repository of
meta-information providing services for maintaining entries
and for coordinating the distributed nodes of the repository.
Figure 1 shows the registration of the MPwU rule2 in IW-
Base having the following attributes:

� a URI that is the unique identifier for the rule –
http://.../registry/ DPR/MPwU.owl
#MPwU;

� a type – PrimitiveRule;

� a name – “Modus Ponens with Unification”;

� a string containing the rule’s formal specification; and

� a representation language used for writing the rule
specification.

Boxes in the figure are abstractions of PML documents
written in OWL and representing meta-level concepts re-
lated to proofs. Each PML concept has a type and a URI
identified above each box.

A few points worth noting follow:

� meta-information related to objects referred to in
proofs such as rules are registered in the IWBase. That
meta-information can be used anytime for several pur-
poses including checking rule applications. Figure 1
also shows a few representation language entries used
for specifying proof-level contents, i.e., the entry for
the SCL and InferenceML languages.

� InferenceML may be used to specify inference rules at
the proof meta-level. Thus, tools can use these spec-
ifications for several reasons including proof transfor-
mations based on the matching of derived rules against
proof fragments. Since proof transformation may be
used to abstract proofs into more meaningful explana-
tions, this can be of value.

4.2 IWBase Translation Rules

In addition to primitive and derived rules, IWBase sup-
ports the registration of translation rules representing ex-
pression transformations from one language into another
one. Translation rules are directional so a rule from
 to
� and a rule from � to
 are different. IWBase restricts to
one the number of translation rules from one given language
into another given language.

2The actual IWBase entry for MPwU may be visualized online using
an IWBase registrar at http://iw.stanford.edu/iwregistrar or it can be ac-
cessed directly from the IWBase registry in its original OWL [14] format
at http://iw.stanford.edu/registry/DPR/MPwU.owl.

A translation rule associated program be called dur-
ing the process of checking a proof if registered in IW-
Base. Registered associated programs (translators) can ei-
ther translate an expression written in
 into an expression
written in � or return an error code informing that it cannot
perform the translation. In fact, translators are not required
to support full translation between languages.

PML checking tools based on InferenceML can always
try to translate sentences written in languages other than
SCL into SCL by used translation rules and their transla-
tors. Thus, once node set conclusion can be translated into
SCL, checking tools can verify if rule specifications in In-
ferenceML can match inference step premises and conclu-
sions as described in Section 3.3. SCL is used as a base
language for InferenceML since SCL it is an abstract lan-
guage and translators from first-order languages into SCL
are usually easy to implement.

5 Checking Hybrid Proofs

A generic checking service for PML proofs first checks
all the inference steps in proofs and second, for all proof
ground assertions, it makes use of the source usage feature
of PML to verify that assertions actually match source con-
tents. The checking service works in the same way whether
the proof is hybrid or not and follows the steps described in
Section 5.1. In fact, the checking service should be able to
access inference rule specifications dynamically and to use
the specifications to check the proof steps as described and
exemplified in Section 5.2

5.1 A PML Proof-Checking Service

We have used an InferenceML API to implement a
proof-checking service and it has the following steps for
matching:

1. Parse the rule specification into a parse tree

2. The internal nodes of this parse tree correspond to In-
ferenceML operators like � , � , � � and the leaves cor-
respond to the raw variables that occur in the Infer-
enceML rule specification

3. Bindings for variables that stand for lists and single-
tons are provided by the proof that is being checked.
Bindings for variables of numeric and substitution
types are automatically computed by the system. For
example, if the rule uses
 � � then all elements of the
list
 are tried automatically by the system and we do
not need to explicitly specify the binding for the index
variable � . A binding for the list variable
 however,
needs to be provided by the proof as described in the
next section.

Figure 1. IWBase proof meta-information.

4. The parse tree is then evaluated according to the bind-
ings provided. So if we have a node with operator
� and its two children have lists
 and � , then the
nodes are collapsed into a single node that is a list of
the union of the elements of
 and � .

5. When the evaluation process is complete, we are left
with a single root node and that is matched against the
actual section from the nodeset file to see if everything
matches.

The proof checker service has been implemented as
a JSP application and a few demos are available at
http://iw.stanford.edu/checker.html.

5.2 Proof Step Checking: An Example

Recalling the TonysSpecialty example in the introduc-
tion, Figure 2 shows a PML proof fragment composed of
three node sets,
 , � and � , where we want to check
if the inference step in node � is a correct rule appli-
cation. Node � is produced by the Wine Agent and it
concludes that TonysSpecialty is a seafood dish. Node

 is also produced by the Wine Agent deriving informa-
tion provided by the food information extraction web ser-
vice saying that TonysSpecialty is a crab dish (this part
of the proof is not in Figure 2). Node � is from the
food taxonomy service saying that crab is a subclass of
seafood, So, each node set is represented as a stand-alone
rectangle3 that is uniquely identified by a URI. The URI
for
 is http:// � � �/A.owl#A and the URIs for � and
� are similar to the URI for
 replacing “A” by “B”

3The graphical notation in Figure 2 is consistent with the notation in
Figure 1 since boxes on both figures are PML elements as described in [17].
Boxes in the Figure are abstractions of PML documents written in OWL.
Stand-alone boxes represent PML node sets and the inner-box represents a
PML inference step. The URI of each node set is identified on its top.

and “A” by “C” respectively. The inference step to be
checked is represented as a box within � attached to the
isConsequentOf property. The inference step is said to
be an application of MPwU as indicated by the URIref in
the hasRule property of the inference step. Thus, the step
is a correct application of MPwU if:

1. the conclusions of the inference step antecedents,
which are (implies (subClassOf CRAB
?x) (type TonysSpecialty ?x)) and
(subClassOf CRAB SEAFOOD), match the
rule premises, which is “p; ’(implies ’ r q
’)’”;

2. the inference step conclusion, which is (type
TonysSpecialty SEAFOOD), matches the rule
conclusion, which is “q[s]”;

3. the rule syntactic conditions can be verified for condi-
tions 1 and 2.

¿From the hasMetaBindings property of the in-
ference step, the checking service knows that: � is
bound to (subClassOf CRAB SEAFOOD); � is bound
to (subClassOf CRAB SEAFOOD); and
 is bound to
(type TonysSpecialty ?x). Thus, the inference
step meets requirement 1 since it has two premises and the
premise that is not bound to � is an implication (it has the
SCL lexicon “implies”). The service can also verify that
the step meets the requirement 2 since the conclusion and
the sentence derived from the implied part of the premise
has the same predicate (i.e. “type”) and both have two ar-
guments. Thus, ����� � � � � ��� “SEAFOOD”/?x. Moreover,
the inference step is a correct application for MPwU since
the conclusion of � is the application of
 � �����$� �	� � � � .

The hasMetaBindings property of inference step as-
sumes that inference engines producing PML documents

Figure 2. PML proof-level information.

have access to the rule specification in the IWBase in order
to generate the meta-level bindings. PML, however, does
not force inference steps to have meta-level bindings in or-
der to be well-formed. Therefore, checking tools may be
unable to decide the correct way of binding schematic vari-
ables if meta-level bindings are not provided.

6 Related Work

Inference rules are often implemented rather than spec-
ified declaratively. Some systems, however, allow users to
specify inference rules. For instance, Isabelle [16], as one of
the many theorem provers that adopted Edinburgh LCF [8]
techniques of programming inference rules, is an inference
engine where users can specify their own rules (LCF and Is-
abelle are also called programmable theorem provers). Al-
though Isabelle is a powerful engine in the sense that it sup-
ports a wide range of kinds of inference rules and logics,
its rule specifications are neither abstract nor declarative.
Thus, using the LCF meta-language, users need to program,
for example, how a specific unification should be imple-
mented. Moreover, it may be very difficult and sometimes
impossible to combine Isabelle proofs depending on which
set of rules was used to generate each proof. Nevertheless,
rule specifications in Isabelle are not intended to be used
for matching logical sentences written in representation lan-
guages other than the one specified in Isabelle.

JAPE [19] is a proof editor where users can interact with
the editor to create or modify proofs. Proofs are created
and modified according to abstract rule specifications [4].
The JAPE notation for specifying rules has many similari-
ties with InferenceML including syntax conditions that are
called provisos. One difficulty in using the JAPE meta-
language is that it requires encoding syntactic categories for
every new language used for representing logical sentences.

So, it does have limited capability for identifying different
classes of expressions however, it may not be considered
simple to use this capability.

Similar to InferenceML, the OWL Rule Language
(ORL)[9] is another rule specification language also in-
tended to be used for the Semantic Web. ORL claims to add
expressive power to OWL and to be a syntactical and se-
mantical extension of OWL itself. Also, ORL rules are ba-
sically represented in OWL. The “human readable” version
of ORL as described in the paper is too simple to accom-
modate the complexity of rules as described in this paper.
Moreover, ORL does not address the problem of integrating
proofs provided from distinct engines and with expressions
represented in different languages.

The current InferenceML is expected to be extended to
incorporate some of the useful aspects of the rule specifi-
cation languages described above. For example, we expect
InferenceML to become as abstract as the JAPE notation
but without having the same difficulties of encoding syn-
tactic categories for several representation languages. The
IWBase may be a possible alternative to avoid the registra-
tion of new syntactic categories if a wide number of rules
can be translated into a common language such as SCL. As
opposed to ORL, InferenceML does not aim to have a uni-
fied representation for “proper” inference rules (the primi-
tive rules implemented in inference engines) and rules de-
rived from primitive rules. In fact, the OWL rule language
assumes that PML can be used to describe derived rules
and theorems can be described as derived rules. There-
fore, rules called “production rules”, “business rules” and
“event-condition-action rules” can be defined in terms of
PML proofs even without the need of InferenceML.

There is also related work in proof transformation, proof
rewriting, and matching. The closest to our work is [1] on
matching patterns initially used for pruning explanations of

earlier description logics [11, 3] and then later rewriting
work [2]. This work was aimed initially at matching for
pruning, then matching more generally, and in term rewrit-
ing for non-standard inferences and finding unifiers. More-
over, the initial focus on the earlier work was to represent
patterns to match concept descriptions (for presentation and
pruning) and the focus on this work is to represent patterns
in rules (for both abstraction and rule combination).

7 Conclusions

In this paper, we have described how to check hybrid
proofs, which are proofs generated by multiple agents and
services, each service using different sets of inference rules
to derive their answers. We have also presented the need
for a declarative language to annotate hybrid proofs with
inference rule specifications. We also introduced the Infer-
ence Meta Language (InferenceML) as an option for such
language. We eventually have described how hybrid proofs
can be checked and provided an example.

InferenceML is a language that supports the specification
of a wide variety of inference rules, enabling the checking
of proofs in hybrid question answering systems. By pro-
viding a language for encoding inference rules, it facilitates
proof checking (thereby improving checking and reliabil-
ity of question answering systems). In addition, it supports
proof combinations (thereby supporting interoperability),
inference rule specification (thereby supporting justification
access and presentation), and pattern specification (thereby
supporting abstraction and matching).

InferenceML provides a language that supports abstract,
uniform encodings of inference rules. Particularly in com-
bination with the Proof Markup Language, it provides a
flexible and necessary foundation enabling proof presen-
tation, abstraction, and combination thereby providing an
infrastructure for interactive and interoperable explanations
of answers from hybrid systems.

The work described here is functional but there are many
desirable extensions yet to be made to the checker. Check-
ing the validity of node set conclusions in languages other
than SCL is planned future work as well as the extension of
the InferenceML to check proofs for information extraction
as described in [15].

The work and tools described in this paper including an
InferenceML parser and checking service are available for
use and feedback as described in the Inference Web website:
http://iw.stanford.edu.

References

[1] Franz Baader, Ralf Küsters, Alexander Borgida, and
Deborah L. McGuinness. Matching in Description

Logics. Journal of Logic and Computation, 9(3):411–
447, 1999.

[2] Franz Baader, Ralf Küsters, and Ralf Molitor. Rewrit-
ing Concepts Using Terminologies. In A.G. Cohn,
F. Giunchiglia, and B. Selman, editors, Proceedings of
the Seventh International Conference on Knowledge
Representation and Reasoning (KR2000), pages 297–
308, San Francisco, CA, 2000. Morgan Kaufmann
Publishers.

[3] Alex Borgida and Deborah L. McGuinness. Asking
Queries about Frames. In Proceedings of Fifth Inter-
national Conference on the Principles of Knowledge
Representation and Reasoning, Cambridge, Mas-
sachusetts, November 1996. Morgan Kaufmann.

[4] Richard Bornat and Bernard Sufrin. Roll your own
JAPE logic, jape version 3.2 edition, September 1997.

[5] Lassaad Cheikhrouhou and Volker Sorge. PDS – A
Three-Dimensional Data Structure for Proof Plans. In
Proceedings of the International Conference on Artifi-
cial and Computational Intelligence (ACIDCA’2000),
Monastir, Tunisia, March 2000.

[6] Richard Fikes, Jessica Jenkins, and Gleb Frank. JTP:
A System Architecture and Component Library for
Hybrid Reasoning. Technical Report KSL-03-01,
Knowledge Systems Laboratory, Stanford University,
Stanford, CA, USA, 2003.

[7] Michael R. Genesereth and Richard Fikes. Knowl-
edge interchange format, version 3.0 reference man-
ual. Technical Report Logic-92-1, Computer Science
Department, Stanford University, Stanford, CA, USA,
1992.

[8] Michael J. C. Gordon, Robin Milner, and Christo-
pher P. Wadsworth. Edinburgh LCF: A Mechanised
Logic of Computation. Number 78 in LNCS. Springer-
Verlag, 1979.

[9] Ian Horrocks and Peter F. Patel-Schneider. A pro-
posal for an owl rules language. In Proc. of the
Thirteenth International World Wide Web Conference
(WWW 2004). ACM, 2004. To appear.

[10] Eric I. Hsu and Deborah L. McGuinness. Wine Agent:
Semantic Web Testbed Application. In Proceedings
of 2003 Description Logics (DL2003), Rome, Italy,
September 5-7 2003. CEUR Workshop Proceedings.

[11] Deborah L. McGuinness. Explaining Reasoning in
Description Logics. PhD thesis, Rutgers University,
1996.

[12] Deborah L. McGuinness and Paulo Pinheiro da Silva.
Infrastructure for Web Explanations. In D. Fensel,
K. Sycara, and J. Mylopoulos, editors, Proceed-
ings of 2nd International Semantic Web Conference
(ISWC2003), LNCS-2870, pages 113–129, Sanibel,
FL, USA, October 2003. Springer.

[13] Deborah L. McGuinness and Paulo Pinheiro da Silva.
Registry-Based Support for Information Integration.
In Proceedings of IJCAI-2003 Workshop on Informa-
tion Integration on the Web (IIWeb-03), pages 117–
122, Acapulco, Mexico, August 2003.

[14] Deborah L. McGuinness and Frank van Harmelen.
OWL Web Ontology Language Overview. Technical
report, World Wide Web Consortium (W3C), Decem-
ber 9 2003. Proposed Recommendation.

[15] J. William Murdock, Paulo Pinheiro da Silva, David
Ferrucci, Christopher Welty, and Deborah L. McGuin-
ness. Encoding Extraction as Inferences. In Proceed-
ings of AAAI Spring Symposium on Metacognition on
Computation, Stanford University, USA, 2005. AAAI
Press.

[16] Lawrence C. Paulson. Isabelle: the next 700 theorem
provers. In P. Odifreddi, editor, Logic and Computer
Science, pages 361–386. Academic Press, 1990.

[17] Paulo Pinheiro da Silva, Deborah L. McGuinness, and
Richard Fikes. A Proof Markup Language for Seman-
tic Web Services. Information Systems, 2004. (to ap-
pear).

[18] Paulo Pinheiro da Silva, Deborah L. McGuinness, and
Rob McCool. Knowledge Provenance Infrastructure.
IEEE Data Engineering Bulletin, 25(2):179–227, De-
cember 2003.

[19] Bernard Sufrin and Richard Bornat. Encoding a
natural deduction system for the jape proof editor.
Technical Report PRG-TR-9-98, Programming Re-
search Group, Oxford University Computing Labora-
tory, 1998.

[20] Ilya Zaihrayeu, Paulo Pinheiro da Silva, and Debo-
rah L. McGuinness. IWTrust: Improving User Trust
in Answers from the Web. Technical Report DIT-04-
086, Informatica e Telecomunicazioni, University of
Trento, Trento, Italy, December 2004.

