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Abstract

Declarative models can provide abstract descriptions of user interfaces. Therefore,
it is desirable to use declarative models for designing user interfaces since complex
details of the user interfaces can be avoided at the design time. However, declarative
models are usually not able to describe all aspects required to generate user interfaces.
This paper describes the code generation of complete user interfaces from declarative
models. The runtime context and the code generation process are presented and
explained. Details of the declarative models and the runtime class library used by the
code generator are described. Further, an illustrative example of the use of the code
generator is also provided. The code generator is part of the Teallach model-based
user interface development environment.

1 Introduction

There are significant improvements in the development of graphical user interfaces during
this last decade. Widgets, for example, are even able to easy handle images and sounds
now. Moreover, there are powerful tools such as user interfaces (UI) builders and toolkits
that facilitate the hard work that are the widgets handling and the UI layout customi-
sations [10]. Despite the improvements on graphical user interfaces and their developing
tools, they still are a challenging part of the development of most data intensive appli-
cations. User interface management systems (UIMSs) appeared as a category of tools
trying to support a systematic design of user interfaces [14, 18]. UIMSs improve the UI
development when compared with UT builders and toolkits [10]. However, UIMSs are not
able to describe Uls providing a suitable level of abstraction. For instance, UIMSs usually
require a description of the complex dialogue between users and user interfaces instead of



a description of the tasks performed by users and applications. Model-based user interface
development environments (MB-UIDESs) are the state-of-art in terms of Ul development
[6, 17]. Using MB-UIDEs, users can design Uls abstracting details normally required by
UIMSs.

The MB-UIDE technology, however, is not a stable technology. In fact, most MB-UIDE
prototypes don’t achieve a running user interface. Therefore, it is hard to show that their
declarative models have the information required for generating running interfaces. It is
even hard to prove that it is possible to generate user interfaces from their declarative
models. Teallach [6, 7, 5] is a MB-UIDE that can generate Java user interface code for
data intensive applications from UI declarative models. This paper present details of how
the code generator successfully generates user interface code from declarative models in
Teallach.

The paper is structured as follows: Section 2 presents the reasons to implement a code
generator to achieve running user interfaces from declarative models. Section 3 describes
the declarative models used by the code generator. Section 4 describes the runtime context,
which includes the class library used by the generated code. Section 5 describes the code
generation process. Section 6 presents a code generation example. Section 7 presents some
conclusions and indicates possible improvements for the presented code generator.

2 Background

MB-UIDE Development Life-cycle. The development of Uls using MB-UIDEs is
centred in the design of the Ul. The running interfaces are automated generated from the
user interface models by the MB-UIDEs [17]. The running interface, as a Ul prototype, can
be used by designers and expert users to validate the models. Any design refinement must
be carried out in the declarative models. Indeed, the declarative models must contemplate
the whole Ul design. At the end of the design phase, the user interface code can be
generated from the complete and validated models.

Further UI refinements can be carried out directly into the generated code at the
implementation time. It is not expected to be a hard work to refine, and even to maintain,
the generated code. In fact, the code is usually written in a standard way, and in a well-
known object-oriented programming language (OOPL).

Code generation is not the unique way to achieve running interfaces from declarative
models. In Humanoid [16], for example, the running interfaces are generated by Amulet
[11], that is a UIMS. In this case, the Humanoid generates the specification of a UI for
Amulet. In ITS [19] the models are interpreted by the application. In this case, the ITS
runtime interpreter is linked with the application.

Code Generation Choices. The code generation approach have some benefits when
compared with the other approaches for generating running interfaces. The code gener-
ation can make the Ul easy take advantage of the benefits of the selected OOPL. For
instance, the UI can be platform-independent if it is coded in Java [4], or it can have a
high-performance if coded in C++. No overheads are introduced by the use of UIMSs or



runtime interpreters. Additionally, the user interface code can be freely modified without
restrictions due to other softwares responsible for the execution of the UL

In terms of the declarative models validation, the code generation is also a good choice
since the running interfaces are entirely generated from the models. In this case, don’t
have a single piece of software between the models and the running interface that can insert
or modify the behaviour of the generated interfaces. These are some reasons for choosing
the code generation approach. However, the use of UIMSs and runtime interpreters also
present some benefits such as the dynamic reconfiguration of the user interface and their
components.

Code Generation in other MB-UIDEs. There are many researches improving the
MB-UIDE technology. Most of these researches has at least a strategy for generating
running interfaces. ITS [19] is one of the few examples of MB-UIDE that interpret declar-
ative models at runtime. The use of UIMSs is a popular choice, indeed. AME [9] generates
code for Open Interface. Humanoid [16] and the first version of Mastermind [17] generate
code for Amulet [11]. TADEUS [3] generates code for ISA Dialog Manager. The code
generation is the other popular choice. AME [9], JANUS [1] and the second version of
Mastermind [15] generates C++ code, while MOBI-D [12] and Teallach [6] generates Java
code.

Despite these efforts, none of them completely describes how to generate code from
the declarative models. Schlungbaum and Elwert [13] presents details of how TADEUS
generates a Ul description file for ISA Dialog Manager, that is a UIMS. However, it is not
possible to show that a UI code can be generated only from the TADEUS models. The
Stirewalt’s thesis [15] also describes part of the code generation problem. There, Stirewalt
describes how the second version of Mastermind generates code using the Mastermind
Toolkit (MMTK), that is based on C++. However, only part of the declarative models
are used to generate code using MMTK. The other part of the models are still used to
generate code using Amulet.

3 Teallach Declarative Models

The Teallach is a development environment where designers can graphically model the
user interface. The models described here are those implemented into the development
environment.

The Declarative Models. There are three models that describe different aspects of a
user interface: the domain model that describes the domain application properties that are
relevant to the user interface; the task model that describes the tasks required to execute
the application functions; and the presentation model that describes the visual part of the
user interface.

The domain model can be defined by persistent ODMG objects, distributed CORBA
IDL objects or transient JAVA objects. A wide range of domain models can be used as a
Teallach domain model.



The task model is composed of a hierarchical tree of tasks. Tasks that have subtasks
are called composite tasks, while leaf tasks are primitive tasks. Composite tasks can be:
sequential tasks where the subtasks are executed in order; order independent tasks where
the subtasks must be executed, but in any order; choice tasks where only of the subtasks
is executed; optional tasks where any number of subtasks might be executed, even none or
all of them; repeatable tasks composed of only one subtask that is repeated the number of
times specified by its parent task; conditional tasks that specify conditions to execute their
children tasks that evaluate specific conditions. Additionally, composite tasks can have
state objects that are objects from the domain model or from the presentation model.

Primitive tasks can be action tasks or interaction tasks. State object methods are
invoked into action tasks. The interaction between users and application is performed
into interaction tasks using presentation objects declared as state objects in ancestors’
composite tasks.

The presentation model is composed of interaction objects. There are two categories
of interaction objects, defining two distinct level of abstraction: the concrete interaction
objects (CIO) and the abstract interaction objects (AIO). The concrete interaction objects
are the widgets that compose the Ul. However, as object-oriented programming languages
usually have many CIOs, and these CIOs require many customisation, the Ul designer can
model the Ul only specifying AIOs that describe the relevant properties of the interaction
objects at the design time.

The presentation model still require some grouping components to aggregate the in-
teraction objects. Like interaction objects, there are abstract and concrete grouping com-
ponents.

A comprehensive discussion about the Teallach models is described in [5]. Details of
how the Teallach models are edited are described in [].

Model Relationships. The task model is responsible for the integration of the Teallach
models. Precisely, the state objects inside the composite tasks are the integration elements
of the Teallach model. Each state object is a domain object or a presentation object.
Therefore, there are implicit links between the tasks where the state objects are defined
and members of the domain and the presentation models. One special kind of link that
exists inside the task model is that linking the state objects to the primitive tasks where
they are effectively used. Figure 1 shows how a link is specified in the Teallach development
environment.

The links between the domain model and the other models are restricted to the links
provided by the state objects. However, it is required additional links between the task
model and the presentation model. Each interaction task requires one CIO. Action task
can be linked to CIOs. Composite tasks can be linked to grouping components.

4 Runtime Context

The generated user interface is coded in Java using Swing. The Model-View-Controller
(MVC) architecture is used to code the user interface components. A specialised class
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Figure 1: Snapshot of a Teallach screen when the user is explicitly linking an object from
the domain model with a state object in the task model. A wizard window helps the user
modelling the link.

library coded in Java and using the MVC approach is also used by the generated interface.

Model-View-Controller Architecture. The MVC architecture [8] provides a suitable
strategy for developing user interfaces using OOPL. Indeed, the MVC specify how the user
interface software should be separated into components, each one with a specific function.
The model components are responsible for handling the state of objects used by the user
interface. The view components are responsible for the user interactions that display the
states of the model components. The controllers are responsible for handling the user
interactions that can modify the state of the models. One additional benefit of the MVC
architecture is that it describes the possible relationships between the MVC’s components.
In particular, the MVC architecture provides a clear distinction between the visual part
of the user interface — the views and controllers — and the state of the user interface — the
models.

Java and Swing. Nowaday there are many powerful and reliable OOPLs that can be
used for implementing graphical user interfaces. Further, there are many OOPLs that also
provide facilities to implement UI code using the MVC architecture. Java is the chosen
OOPL in the Teallach project. The main reason for this choice is that Java is a platform-
independent OOPL due to the Java Virtual Machine (JVM) [4]. In fact, the JVM avoid
the complex problem that is the migration of Uls developed from a specific platform to



another platform.

Moreover, the Teallach project is also considering the use of Swing components. These
components are lightweight Java components, which means, they are entirely coded in Java,
not relying on native code as the Java’s Abstract Windowing Toolkit (AWT). Additionally,
the Swing components provide a clear distinction between view components and model
components since they implement the MVC architecture. Therefore, it is possible to
dynamically move from a Motif-like UI to a MS-Window-like UI just replacing the set of
views, called the look-and-feel of the UL Thus, the Java with the Swing components provide
the required programming resources that are used by the Teallach Code Generator.

Class Library. A runtime class library has been created with the aim of reduce the
necessity of generate the whole user interface code. The strategy is to keep the complexity
of the user interface code into the runtime class library avoiding the generation of com-
plex classes. The runtime class library contains a task type class hierarchy, presented in
Figure 2, and a state object wrapper class.
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Figure 2: The task type hierarchy.

The tasks of the task model become subclasses of the RuntimeAbstractTask class.
More precise, the composite tasks become subclasses of the RuntimeCompositeTask,
the action tasks become subclasses of the RuntimeActionTask and the interaction tasks
become subclasses of the RuntimeInteractionTask. The RuntimeCompositeTask pro-
vides a method to aggregate a Swing grouping component into their subclasses. The
RuntimeCompositeTask also provides a method to aggregate subtask classes into their
subclasses. The RuntimeActionTask provides a thread to execute the assigned state ob-
ject operation. The RuntimeInteractionTask provides a method to aggregate a Swing



component.

As subclasses of the RuntimeAbstractTask class, the task classes implement the
operations activate(), deactivate(), initiate() and terminate(). Basically, the
activate() operation enables the interaction of the user with the part of the UI responsi-
ble for the activated task. On the opposite way, the deactivate () operation disables the
interaction. The terminate () operation, usually associated with the deactive () opera-
tion, notifies the parent task class that the current task class has finished. The initiate()
operation returns the Ul to the state it had when initially created. The initiate () oper-
ation is invoked on the children tasks of a composite task that has been activated. Specific
behaviours for these operations are performed for task classes of different categories. For
instance, composite task classes invoke the setVisible(true) operation for their ag-
gregate grouping component, and interaction task classes invoke the setEnable(true)
operation for their aggregated CIO, when these task classes are activated.

Still in Figure 2, action and composite tasks can have aggregated interaction compo-
nents. In this case, the interaction components are called initiators. Initiators are required
to: (1) fire action tasks that are designed to be started on demand; (2) fire composite tasks
that are subtasks of choice tasks, optional tasks or order independent tasks.

In terms of state objects, the class library provides the RuntimeStateObject class that
is a state object wrapper. There are two reasons to wrap an state object: (1) the user
interface code require static references of state objects that, as instances of domain objects
or CIOs, can be dynamically instantiated, modified and destroyed during the execution of
the user interface; (2) there are no mechanism to identify state object state transitions.

The user interface code must have a static reference to the state objects since the links
between the state objects of a task class and the state objects of its subtask classes is
established in the task class constructors. As state object wrappers are instantiated with
the task classes and are not destroyed during the application execution, then they can be
used as a static reference to the state objects.

The necessity to identify state object state transitions is due to the MVC architecture.
State objects that are domain objects are MVC models. State objects that are presenta-
tion components can be MVC views, controllers, or both view and controllers. Then, the
interaction task classes need to identify MVC model’s modification to update their views
and/or need to identify MVC controller’s action to update their models. Therefore, the
RuntimeStateObject class provides a method used by the interaction task classes to reg-
ister their adaptor classes as listeners of the required state objects. The MVC architecture
also require static references to state objects as the task classes.

5 Code Generation Process

From the Task Model to the UI Code. The code generator executes four modules,
in this order: the ApplicationGenerator, the StateObjectMapper, the Composite-
TaskGenerator and the PresentationPacker. The ApplicationGenerator creates a
standard class responsible for the invocation of the root composite task at runtime. The
StateObjectMapper provide a mapping of the state object wrappers between parents and



children tasks. The CompositeTaskGenerator creates the code of the composite task
classes and also invokes the ActionTaskGenerator, the InteractionTaskGenerator and
the PresentationGenerator, when required. The PresentationPacker add into the
presentation classes the presentation components not linked with tasks.

The task model describes in which composite task the state objects are declared, and
in which primitive task they are used. At the design time, it is assumed that state objects
are visible in the descendant tasks of the composite task where they were declared. The
State0ObjectMapper identifies the state objects that are requited for each composite task.
The mapper performs a preorder traversal of the task model populating a mapping table of
each composite task with their declared state objects. For each primitive task reached in
this preorder traversal, a new process is initiated. This new process populates the mapping
table of the tasks between the primitive tasks and the tasks where the state objects were
declared.

The CompositeTaskGenerator performs recursively another preorder traversal of the
task model. During this traversal the CompositeTaskGenerator: (1) generates the code
for the reached composite tasks; (2) invokes the PresentationGenerator for the compos-
ite tasks that are explicitly linked to a grouping component of the presentation model;
(3) invokes the ActionTaskGenerator for the reached action tasks; and (4) invokes the
InteractionGenerator for the reached interaction tasks. The standard code of a com-
posite task class creates an array of subtasks that are invoked according to the temporal
relation specified by the superclasses of the composite task classes. The composite task
classes receive an array of RuntimeStateObjects that are the state objects wrappers,
forwarding a proper array of RuntimeStateObjects for each subtasks, according to the
mapping table created during the execution of the StateObjectMapper.

The PresentationGenerator is invoked for a specific grouping component of the pre-
sentation model. During an execution of the PresentationGenerator, it performs a
breath-first traversal of the presentation model identifying the immediate children of the
provided grouping component. A code is generated for the provided grouping component
and its children that are interaction components. The children that are grouping compo-
nents are not contemplated during this execution of the PresentationGenerator. The
generated code is composed only of CIOs. Therefore, the translation of AIOs into CIOs is
performed at the code generation time. The code for the children grouping components are
generated when they are the provided grouping components of the PresentationGenerator,
or after the execution of the CompositeTaskGenerator, when the code for the presentation
model components not explicitly referred by the task model are generated.

Extended Interaction. There are widgets that are not modelled in the presentation
model that are coded in the generated interfaces. These widgets belong to a special cat-
egory of widgets responsible for controlling the composite tasks. There are three possible
controls that these widgets inform to the composite task. The Cancel button notifies the
task that it was aborted by the user. The Ok button notifies the task that it has been
finished. The Next button, used only in concurrent tasks, notifies that the user wish to
see the Ul of the next running subtask. These buttons are added at the bottom of the



grouping component aggregated to the composite task. Table 1 shows how each one of
these buttons are used in the Teallach.

Composite Task Cancel | OK | Next
Category
Choice yes no no
Concurrent yes no yes
Conditional yes no no
Optional yes yes no
Order independent yes yes no
Repeatable yes no no
Sequential yes no no

Table 1: Extended interaction for composite tasks.

The behaviour of the Cancel button depends on the category of the parent task of
the composite task that is been cancelled. If the parent task is a choice task, the parent
task is restarted. If the parent task is an optional task, the current task is finished. If the
parent task is a concurrent, repeatable or an order independent task, the current task is
restarted. In fact, the initialisation of subtasks of concurrent and order independent tasks
only activate the initiators of the subtasks. Finally, if the parent task is a sequential task,
the parent task is finished.

6 An Example

The development of Uls using Teallach is exemplified by the design and the code generation
of the UserConnection user interface of a library system. Executing the Library System,
the user must specify if s/he is connecting as a librarian or a borrower. Further, the user
must provide her/his login name and password. Figure 3 shows a possible set of Teallach
models for the UserConnection UI.

In the task model, the connect composite task has three subtasks: the newConnection-
Data action task, the specifyInfo order independent task and the tryConnection action
task. Additionally, the connect task has a state object Con of the type ConnectionData.
The Con state object is a domain object. Therefore, the domain model provides the infor-
mation concerning the ConnectionData type. Figure 3 also shown that the specifyInfo
task, as a composite task, has its own subtasks, that also have other subtasks.

The Teallach presentation model can be composed of abstract and concrete compo-
nents. In the presentation model of Figure 3, there are abstract grouping components, such
as the Container, and concrete grouping components, such as the JPanel. The presen-
tation model also has interaction components such as the Inputters, that are AIOs, and
the JRadioButton, that are CIOs. Abstract components require less customisation than
concrete objects, which facilitates the design of the Uls. However, concrete components
are required to refine the user interface design, fixing some preferences in the model. Ab-
stract components are replaced by their defaults concrete components at code generation
time. Default settings are used to customise the concrete components. Concrete objects
fixed in the presentation model and their settings are preserved by the code generator.
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Figure 3: The Teallach models for the UserConnection user interface.

The Generated Code. Figure 4 presents a UML [2] class diagram displaying the re-
lationships between the generated user interface classes. The LibrarySystem class was
generated by the ApplicationGenerator. The LibrarySystem class, as the application
class, is the class that implements the main() method and that activate the root task
connect. The classes which names are suffixed with ’Container’ were generated by
the PresentationGenerator. The classes which names are suffixed with ’Interaction’
or ’Adaptor’ were generated by the InteractionGenerator. The classes which names are
suffixed by *Action’ were generated by the ActionGenerator. The classes which names
are the same of the task model are composite tasks that were generated by the Compos-
iteTaskGenerator.
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Figure 4: The generated user interface classes.
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Excepting ’Container’ and ’Adaptor’ classes, the other classes in Figure 4 are
subclasses of the RuntimeAbstractTask in Figure 2. For instance, the action tasks
are subclasses of the RuntimeActionTask, the interaction tasks are subclasses of the
RuntimeInteractionTask and each composite task is a subclass of one of the subclasses
of the RuntimeCompositeTask.

The running user interface. The path of the class library and the domain application
classes must be added into the environment variable ClassPath. After this setting, the
compilation and execution of the generated classes will produces a running user interface
for the application. The domain classes are naturally used by the user interface since
the declarative domain model provides the information required by the user interface.
Figure 5 shows the running UserConnection user interface. The analysis of the generated
user interface indicates that some refinements concerning Cancel buttons can improve the
quality of the UI. In fact, some optimisations related to extended interactions, in general,
are been considered. However, these optimisations are not been considered in this paper.
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Cancel
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Figure 5: The UserConnection user interface.

7 Conclusions

The use of the code generator has proved that the Teallach declarative models are a suitable
set of models to describe user interfaces. Only the control buttons of the composite task
classes are not explicitly described in the models, but well-defined rules are provided
describing when and how these buttons are used. The whole task and presentation models
are used in the code generation process. Parts of the domain model are used, when
required.

Library System user interfaces more complex than the UserConnection user interface
has been designed and generated with success. The use of Teallach has proved that
the environment is a suitable environment for the systematic development of UI since:
(1) it provides an design environment where developers can model UI abstracting the
details concerning the implementation of the UI; (2) the implementation time is drastically
reduced if compared with the implementation time without the Teallach environment.
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Further assessments and improvements of Teallach are planned. In terms of assess-
ments, it is planned to use Teallach for the development of the Uls of a system that
requires Uls more complex that those required by the Library System case study. In
terms of improvements, it is planned to use UML diagrams [2] to describe the UI models.
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