

In Proceedings of the AAAI 2007 Spring Symposium on Interaction Challenges for Intelligent

Assistants, Stanford, CA March, 2007.

Explaining Task Processing in Cognitive Assistants That Learn

Deborah L. McGuinness1, Alyssa Glass1,2, Michael Wolverton2, and Paulo Pinheiro da Silva1,3

Stanford University1 Stanford, CA SRI International2 Menlo Park, CA University of Texas, El Paso3. El Paso, TX

 {dlm | glass}@ksl.stanford.edu mjw@ai.sri.com paulo@utep.edu

Abstract

As personal assistant software matures and assumes more
autonomous control of its users’ activities, it becomes more
critical that this software can explain its task processing. It must
be able to tell the user why it is doing what it is doing, and instill
trust in the user that its task knowledge reflects standard practice
and is being appropriately applied. We will describe the ICEE
(Integrated Cognitive Explanation Environment) explanation
system and its approach to explaining task reasoning. Key
features include (1) an architecture designed for re-use among
many different task execution systems; (2) a set of introspective
predicates and a software wrapper that extract explanation-
relevant information from a task execution system; (3) a version
of the Inference Web explainer for generating formal
justifications of task processing and converting them to user-
friendly explanations; and (4) a unified framework for
explanation in which the task explanation system is integrated
with previous work on explaining deductive reasoning. Our work
is focused on explaining belief-desire-intention (BDI) agent
execution frameworks with the ability to learn. We demonstrate
ICEE’s application within CALO, a state-of-the-art personal
software assistant, to explain the task reasoning of one such
execution system.

Introduction
Personalized software assistants have the potential to
support humans in everyday tasks by providing assistance
in cognitive processing. If these agents are expected to
achieve their potential and perform activities in service of
humans (and possibly other agents) then these agents need
to be fully accountable. Before their users can be expected
to rely on cognitive agents, the agents need to provide the
users with justifications for their decisions, including that
those decisions are based on appropriate processes that are
correct and on information that is accurate and current.
The agents need to be able to use these justifications to
derive explanations describing how they arrived at a
particular recommendation, including the ability to abstract
away detail that may be irrelevant to the user’s
understanding and trust evaluation process. Further, if the
agents are to be used to perform tasks, they need to explain
how and under what conditions they will execute a task.
Additionally, if their information and procedure base is
being updated, potentially by learning algorithms, they
may need to explain what has changed and why it has been
changed.

One significant challenge to explaining cognitive assistants
is that these assistants, by necessity, include task
processing components that evaluate and execute tasks, as
well as reasoning components that take input and
determine conclusions. Thus, a cognitive assistant
explainer will need to explain task processing responses as
well as results of more traditional reasoning systems. An
explanation solution thus must be able to encode, analyze,
and summarize justifications of task execution along with
other forms of reasoning, providing access to both
inference and provenance information, which we refer to
as knowledge provenance (Pinheiro da Silva, McGuinness,
McCool, 2004).

Work has been done in the theorem proving community as
well as in many specialized reasoning communities
including description logics, expert systems, and FOL
systems, to explain deductions. A limited amount of work
has also been done in the task execution community on
explaining task processing. What has not been done is
work explaining task execution in a way that is also
appropriate for explaining deductive reasoning and
provenance. Our work provides a uniform approach to
representing and explaining results (including provenance)
from both communities, with the additional emphasis on
providing explanations of learned information.

Our design and implementation work is in the setting of the
DARPA Personalized Assistant that Learns (PAL)
program, as part of the Cognitive Assistant that Learns and
Organizes (CALO) project. In the CALO system, which
includes work from 22 different organizations, the heart of
the cognitive assistant is a belief-desire-intention (BDI)
architecture (Rao & Georgeff, 1995). This presents a
complex explanation challenge where CALO must explain
conclusions from multiple knowledge sources, both hand
built and automatically generated, with multiple reasoning
techniques including task processing, deduction, and
learning. In this paper, we will present our representation,
infrastructure, and solution architecture for explaining
BDI-based task processing; describe how it has been
implemented in our new Integrated Cognitive Explanation
Environment (ICEE); and show how it has been used to
explain cognitive assistants. We also discuss preliminary
results from a study of CALO users that show how
explanation can be a key component in building user trust

in cognitive assistants, particularly when those assistants
are being updated by learning components.

Motivating Scenario
As a motivating scenario, we provide an example from the
CALO office domain. In this example, the cognitive agent
is working in the role of an office assistant, and has been
tasked with purchasing a laptop for its user. In order to
accomplish the high-level goal of buying a laptop, the
cognitive agent uses a simple three step process with a
laptop specification as input.

The first subtask, GetQuotes, requires the agent to obtain
three quotes from three different sources. The second
subtask, GetApproval, requires a particular form to be
signed by an approval organization representative. The
final subtask, SendOrderToPurchasing, requires a
requisition form to be sent to purchasing. Note that in
sequential tasks such as these, the termination condition of
a previous subtask is typically a pre-condition to the next
subtask.

The user may ask for an explanation of the agent’s
behavior at any time. ICEE provides a display of the
current tasks/subtasks and a dialogue interface to
explaining the agent’s actions. The user can request
explanations by starting a dialogue with any of several
supported explanation request types. For example:

 “Why are you doing <subtask>?”

This question is an example of an explanation request
concerning the motivation for a task. Other task
explanation request types include questions about status,
execution history, forward-looking execution plans, task
ordering, or explicit questions about time (for example,
starting/completion times and execution durations). ICEE
also handles extensive questions about task provenance,
including explanations about the requestor of a task and the
source of the represented procedure which is being
executed by the system. These questions have been guided
by an initial study focused on how to build user trust in
cognitive agents.

ICEE contains one or more explanation strategies for each
explanation request type. Based on context such as system
status and past interactions, in addition to a model of the
user, ICEE chooses one strategy. We have documented a
set of question classes for cognitive assistants and designed
explanation strategies for explanation request types
(McGuinness et al. 2005). For example, in response to the
above question, ICEE may choose the simple strategy of
revealing the task hierarchy:

 “I am trying to do <high-level-task>, and <subtask>
is one subgoal in the process.”

For each explanation request, ICEE can either reuse an
existing task justification, which includes a task execution
trace, or build and parse a new justification. Then ICEE
presents as explanations the portions of the justification
that are relevant to the query and explanation strategy.
Additionally, ICEE suggests follow-up explanation
requests for the user, enabling mixed initiative dialogue
between the agent and the user. For example, follow-up
questions in the above scenario might include:

 “Why are you doing <high-level-task>?”
 “Why haven’t you completed <subtask> yet?”
 “Why is <subtask> a subgoal of <high-level-task>?”
 “When will you finish <subtask>?”
 “What sources did you use to do <subtask>?”

This last example follow-up question in particular makes
use of task provenance information, necessitating that the
system keep track of sources used for both knowledge and
task information.

The ICEE System

Architecture Overview
The architecture of ICEE (shown in Figure 1) is designed
to be flexible and allow explanations to be derived from
justifications gathered seamlessly from a variety of task
processing and knowledge systems. An explanation
dispatcher gathers structured explanation requests from the
user through a collaboration agent or user interface. The
assistant’s user interface provides specialized mechanisms
for users to request explanations.

Based on the type of the explanation request, the
explanation dispatcher determines which explainer will
handle the request, and forwards it to the proper explainer
component, to identify relevant strategies and gather
necessary information from the associated external
component. For questions related to task processing, the
Task Manager (TM) explainer handles the request. The
TM explainer instructs the TM wrapper to gather task
processing information about the requested tasks. The TM
wrapper is closely coupled with a BDI execution system,
or task manager. We have provided a TM wrapper for the
task execution system used in CALO, which is based on
the SRI Procedural Agent Realization Kit (SPARK);
however, any similar task execution system could be
similarly enhanced with explanation capabilities.

The TM wrapper stores the gathered task processing
information in the task state database. This database is
then used by the justification generator to create a
justification for the tasks currently under execution,
including any additional processing that is related to the
current tasks. The generated justification can then be used
by the TM strategies to create alternative explanations and

select the one most salient to the user’s questions. The
explanation dispatcher returns the selected explanation to
the collaboration agent for appropriate display to the user.
Each of these architectural components is discussed below.

Task Oriented Processing
Any complex cognitive agent must have a mechanism for
representing and executing tasks. A belief-desire-intention
(BDI) model is a common framework for task reasoning
components. BDI systems cover a range of execution
capabilities, including hierarchical task encoding, control
of procedural agent behavior, sequential and/or parallel
execution of sub-procedures, conditional execution and
branching, flexible procedure preconditions, and meta-
level reasoning to determine which applicable procedure to
pursue.

Task management in CALO is provided by SPARK
(Morley & Myers 2004), one such BDI agent framework,
which maintains sets of procedures that define agent
actions. The CALO Task Manager’s knowledge base of
procedures includes human-authored procedures along
with procedures that were partially or completely learned
based on evolving information. ICEE gathers information
on both static aspects of procedures within SPARK as well
as dynamic information about its past and current
execution state.

Introspective Predicates
ICEE is designed to provide the users of cognitive agents
with the ability to ask detailed questions about task
execution and to engage in a mixed initiative dialogue
about its past, current, and future task execution. To
provide detailed explanations of the behavior of the task
processing system, justifications must be annotated with
enough meta-data to support a wide range of behaviors.
Particularly when answering complex questions, an

explanation system must have access to information about
many aspects of execution and planning.

To allow usable, detailed explanations to be generated, a
task execution system must expose this meta-information.
One of our contributions is a specification of a set of
introspective predicates that were designed to provide
access to meta-information required for explainable task
processors.

These introspective predicates fall into three categories:

1. Basic Procedure Information: relatively stable,
static information that is not dependant on when or
how a task is executed. Provenance information
about how task definitions have been created or
learned is a key aspect of these introspective
predicates.

2. Execution Information: dynamic information that is
generated as a task begins being executed, and
remains valid in some form throughout the
execution of that task. This information also
includes history related to completed tasks.

3. Projection Information: information about future
execution, as well as alternatives for decision points
that have already passed.

A task execution system, such as SPARK, that provides
access to this set of introspective predicates can be linked
to ICEE and allow it to fully explain all the question types
and strategies described above. Details on the
introspective predicates can be found in (Glass &
McGuinness 2006).

Wrapper, Action Schema and Action Database
In order to collect explanation-relevant information from
the task execution agent and store it in a format

Collaboration
Agent

Justification
Generator

Task Manager (TM)

TM Wrapper
Explanation
Dispatcher

Task State
Database

TM Explainer

Knowledge Explainer

Knowledge Manager

Constraint Explainer

Constraint
Reasoner

Figure 1: ICEE architecture. Shaded boxes show how additional explanation capabilities (beyond explaining task reasoning)
are integrated into the overall framework; these additional components are not discussed in this paper.

understandable by the explainer, we designed and built a
wrapper for SPARK and an intermediate action schema in
which to record task execution information. These
elements were designed to achieve three criteria:
• Salience. The wrapper should obtain information about

an agent’s processing that is likely to address some
possible user information needs.

• Reusability. The wrapper should obtain information that
is also useful in other cognitive agent activities that
require reasoning about action—for example, state
estimation and procedure learning.

• Generality. The schema should represent action
information in as general a way as possible, covering
the action reasoning of blackboard systems,
production systems, and other agent architectures.

The wrapper collects a snapshot of SPARK’s current
processing state as well as the previous decisions that led
to that state. It uses SPARK’s expanded introspective
predicates to extract the portions of its underlying intention
structure relevant to its current intentions, building this
structure by recursively querying for the supporting
elements of intentions and procedures. Example queries
include: What are the agent’s current intentions? What is
the procedure instance that led to intention X? What are
the preconditions that were met before procedure P could
be executed?

After collecting the snapshot, the wrapper stores it in a
SPARK-independent task execution action database. A
portion of the schema of the action database is shown in
Figure 2. This schema reflects that most task execution
systems share the same common structure. While the
current terminology in our schema is consistent with
SPARK’s, the concepts are general and consistent with
other cognitive architectures. For example, “procedures” in
our schema are equivalent to “knowledge sources” in BB*
and other blackboard architectures, “procedure instances”
are equivalent to “Knowledge Source Activation Records

(KSARs)”, etc. (Hayes-Roth 1985). The database records
the relationships between key entities relevant to the
agent’s current state, for example, which intentions were
established by which procedure instances, which procedure
a given procedure instance instantiates, which variables
were bound (and to what value) within a given procedure
instance, and which of a procedure’s termination
conditions were satisfied and which were not.

Our approach of creating a system-specific wrapper and a
generic action schema achieves multiple design goals.
Because the action schema is generic across multiple task
execution systems, only a new wrapper is needed in order
to explain a cognitive agent using a task management
system other than SPARK; no change to the justification
representation discussed below is needed, and the same
explanation strategies can be used. Additionally, the action
schema can be reused by other components in the overall
cognitive agent architecture for purposes beyond
explanation, such as state capture, time-line archiving, or
snapshotting.

Generating Formal Justifications
A cognitive agent’s actions should be supported by
justifications that are used to derive and present
understandable explanations to end-users. These
justifications need to reflect both how the actions support
various user goals, and how the particular actions chosen
by the agent were guided by the state of the world. More
specifically, our approach to task justification breaks down
the justification of a question about a particular task T into
three complementary strategies, described here using
terminology from SPARK:

• Relevance: Demonstrate that fulfilling T will
further one of the agent’s high-level goals, which
the user already knows about and accepts

• Applicability: Demonstrate that the conditions

Figure 2: A portion of the action schema used to store task execution information.

necessary to start T were met at the time T started
(possibly including the conditions that led T to be
preferred over alternative tasks)

• Termination: Demonstrate whether one or more of
the conditions necessary to terminate T has not
been met.

This three-strategy approach contrasts with previous
approaches to explanation, most of which dealt with
explaining inference (Scott et al. 1984, Wick & Thompson
1992). Previous approaches generally have not dealt with
termination issues, and they also generally have not
distinguished between relevance and applicability
conditions. These are critical aspects of task processing
and thus are important new issues for explanation.

Justifications can be seen and represented as proofs of how
information was manipulated to come to a particular
conclusion. We have chosen to leverage the Inference
Web infrastructure (McGuinness & Pinheiro da Silva,
2004) for providing explanations. Inference Web was
designed to provide a set of components for representing,
generating, manipulating, summarizing, searching, and
presenting explanations for answers from question
answering agents in distributed heterogeneous
environments such as the Web. At Inference Web’s core is
an Interlingua for representing provenance, justification,
and trust encodings related to answers called the Proof
Markup Language (PML) (Pinheiro da Silva, McGuinness,
& Fikes, 2006). Inference Web and PML provide our
basic building blocks for representing and manipulating
information concerning how recommendations are
generated and what they depend on. Our work demanded
a method for sharing justifications across the many
components in CALO. PML provided an Interlingua and it
was already being used to encode explanations for answers
generated by an array of reasoning and text extraction
systems. Prior to this effort, Inference Web and PML had
not been used to explain learning results or task execution
engines.

PML provides core representational constructs for
provenance (source, author, etc.), information
manipulation steps (antecedent, consequent, inference rule,
etc.), and trust. Inference Web also provides tools for
interactive web browsing of PML as well numerous UI
tools for presenting summaries, dialogue interfaces,
validators, search modules, etc. (McGuinness, et al, 2006).
PML documents contain encodings of behavior
justifications using PML node sets. An OWL
(McGuinness & van Harmelen 2004) specification of all
PML terms is available, which separates out provenance1,
justifications2, and trust3. PML node sets are the main
building blocks of OWL documents describing

1 http://iw.stanford.edu/2006/06/pml-provenance.owl
2 http://iw.stanford.edu/2006/06/pml-justification.owl
3 http://iw.stanford.edu/2006/06/pml-trust.owl

justifications for application answers published on the
Web.

Each node set represents a step in a proof whose
conclusion is justified by any of a set of inference steps
associated with a node set. A task execution justification is
always a justification of why an agent is executing a given
task T. The final conclusion of the justification is a FOL
sentence saying that T is currently being executed. There
are three antecedents for this final conclusion,
corresponding to the three strategies discussed above. Each
antecedent is supported by a justification fragment based
on additional introspective predicates.

It is important to note that all the task processing
justifications share a common structure that is rich enough
to encode provenance information needed to answer the
explanation requests identified so far. By inspecting the
execution state via introspective predicates, explanation
components can gather enough provenance information to
support a wide range of explanations.

Producing Explanations
Different users may need different types of explanations.
In order to personalize explanations, ICEE uses
explanation strategies. An explanation strategy provides a
method for retrieving provenance and inference
information from justifications, selecting the information
relevant to the user’s request, and presenting the
information to the user. Given the wide range of questions
that a user might want to ask a complex cognitive agent,
we conducted a study which helped us to identify which
questions users would find more immediately helpful in
their daily interactions with a system like CALO. The
feedback from these users motivates our choice of
supported explanation strategies and follow-up questions,
and is further discussed in the next section.

User modeling and strategy selection are handled by the
explanation dispatcher. Currently, user modeling is
restricted to user preferences. Additional approaches based
on user interaction and machine learning techniques are
under investigation.

The explanation strategies are closely tied to the
explanation request types discussed above. In the example
scenario presented earlier, the user asked a question about
the motivation for a subtask, and the explanation used a
strategy of revealing task hierarchy. Other strategies
include providing a task abstraction, exposing
preconditions or termination conditions, revealing meta-
information about task dependencies, or explaining
provenance information related to task preconditions or
other task knowledge. See (McGuinness et al. 2005) for
more details on ICEE’s explanation strategies.

ICEE also provides context-dependent follow-up questions
for the user. Follow-up questions might include requests

for additional detail, clarifying questions about the
explanation that has been provided, or questions essentially
requesting that an alternate strategy be used to answer the
original question. Figure 3 shows an example user
interface linked to ICEE, in which a list of currently
executing tasks is provided to the user. The user has

requested an explanation of the motivation for a subtask of
the first task, and an explanation is provided along with
three suggested follow-up questions.

Establishing Trust in Cognitive Agents
To evaluate the use and effect of explanation in cognitive
agents, we conducted a preliminary trust study among a set
of CALO users. Using a structured interview format, we
studied 10 users who performed a variety of tasks with
individual CALO agents over approximately two weeks.
We had two primary aims for this study:

 To identify what factors users believe influence
their trust in a complex cognitive agent.

 To identify which types of questions, if any, users
would like to be able to ask a cognitive assistant
to better understand the assistant’s answers.

Preliminary results from this study show that
understanding the results, including any unexpected results
(e.g., inconsistencies), and thus establishing trust in a
system as complex as CALO, requires a multi-pronged
approach. While trust in any system generally requires a
series of positive interactions over an extended period of
time, the complexity and constant change of an adaptive
agent presents additional issues. Many users identified two
key factors that would aid in building trust.

The first factor is transparency. The users in our study had
varying levels of familiarity with the components of
CALO, ranging from an active developer familiar with the
algorithms being used in the system, to a user with no prior
knowledge of the project. Regardless of their familiarity
with the system or their technical background, most users
were leery of the opaqueness of the system. When actions

were taken by the system for which the underlying
computational reasoning was not apparent, the users
mistrusted the results. Even when results appeared
reasonable, they sought to verify the results rather than
trusting them outright, fearful that a result may be
anecdotal or based on inappropriate information. These
users identified explanations of system behavior, providing
transparency into its reasoning and execution, as a key way
of understanding answers and thus establishing trust.

The second factor is provenance. Many users commented
that, when presented with a result in CALO, they did not
know whether they could trust the result because they did
not know what source information was used by the system.
These users reported that explanations of source
provenance would enable them to trust results without the
need for much, if any, further verification.

Previous work on building trust recommendations
(Zaihrayeu et al., 2005; McGuinness et al. 2006) has
shown the complexity of understanding the notion of trust,
and how explanation of deductive reasoning can help users
to establish and build trust. We believe that explanation of
task execution in cognitive agents, particularly in the
presence of learned behaviors and information, can
similarly be key to helping users to build trust in these
complex assistants. We are continuing to evaluate the
results of our trust study, and plan to use the results to
guide our future work.

Related Work and Discussion
There has been an abundance of work in explaining expert
systems and, to a lesser extent, explaining automated
reasoning systems. Most of these have focused on some
notion of explaining the deductive trace of declarative
rules. Previous work on Inference Web and related work
explaining hybrid reasoners added to the field by focusing
on settings that are web-based or distributed. Our current
work further expands the coverage by using an approach
that can support explanations of task executions in the
presence of learned knowledge in combination with that of
declarative rule processing, along with provenance.

The literature on automated explanation research that
explicitly addresses explaining actions is sparse. (Johnson
1994) presents a module to explain a Soar agent’s actions
by reconstructing the context in which action decisions
were made, and then tweaking that context (hypothetically)
to discover the elements of the context that were critical to
the decision. While Johnson’s approach does have some
similarities with the way we handle gating conditions, it
does not deal with relevance and termination strategies that
are important to our agent explanation module. Earlier,
(Schulman and Hayes-Roth 1988) developed a BB1
module that explains actions using the architecture’s
control plan, but it does not address explaining when the
control plan does not exist, as is the case in CALO and

Figure 3: An example explanation dialogue, with
suggested follow-up questions.

most other intelligent architectures. Work on plan
description (Mellish & Evans 1989, Young 1999, Myers
2006) has focused on summarizing an agent’s aggregate
behavior (i.e., its entire plan), rather than justifying
individual task choices. Our work thus fills an important
gap in explaining agent actions, providing fine-grained
explanations of a wide range of agent activities, taking into
account more aspects of BDI agent architectures, including
relevance and termination issues (while using an approach
that is compatible with explaining hybrid reasoning
components, such as standard FOL reasoners). One
promising area of future work would be to allow the user
to switch between coarse-grained and fine-grained
explanations of agent activity, combining our work with
the previous approach.

Our current work is driven by the needs of explaining
cognitive assistants. This focus by necessity forces us to
address the issue of explanation infrastructures and
architectures that can work with task execution systems as
well as with deductive reasoners and learning components.
This paper has addressed our current progress on designing
and implementing an extensible and flexible architecture
that is capable of explaining the breadth required by
cognitive assistants.

To start this work, we produced an enumeration and
categorization of classes of cognitive assistant explanations
(McGuinness, et al., 2005), which was further motivated
and refined using the initial results of the CALO trust study
previously described.

We also analyzed the existing execution environment to
identify the actions taken that would need to be explained,
leading to a characterization of the SPARK execution
environment. We believe that this characterization is
representative not just of SPARK, but also of other agent
architectures, most notably BDI-based agents and
blackboard-based systems. The above characterization is
integrated with an explanation architecture capable of
explaining standard reasoners and hybrid theorem proving
environments. For example, we are currently designing an
explanation architecture based on this approach that is to
be used in a new system (GILA – the Generalized
Integrated Learning Architecture – funded by the DARPA
Integrated Learning program (IL 2006)). The program is
still in an early stage, but initial indications support our
hypothesis of leveragability across adaptive learning agent
architectures for broad re-use.

Our architecture and implementation described here
demonstrates that an explanation mechanism initially
designed for explaining deductive reasoning can also be
successfully applied to explaining task-oriented reasoning.
Further, we focused efforts on explaining a complex task
execution system at the heart of our (and potentially any)
cognitive assistant. We developed a three strategy

approach to explaining task execution including relevance,
applicability, and termination.

Our contributions include key ideas for explaining task
processing, such as the distinction between relevance and
applicability and the new work on termination.
Additionally, work devoted simply to explaining task
execution has not traditionally focused on explaining a
broader setting including deduction and provenance. We
developed a framework for extracting and representing the
state and history of a task system’s reasoning, a framework
that is already proving to be useful for building trust and
explanation services in other agent activities.

Work on simply explaining task execution and deduction
may not be adequate by itself to establish user trust.
Knowledge provenance must also be considered. Our
integrated framework includes a component that provides
access to sources used and meta-information concerning
the sources. The current ICEE system includes initial
implementations of all of the components described above,
and is seeded with a limited number of strategies, as
prioritized by our trust study. Current and future work
includes expanding these components to provide more
advanced functionality; additional capabilities for handling
the results of procedure learning (including learning from
instruction and learning from demonstration) that extend
and/or update the procedures that the task execution system
uses; as well as a strong focus on explaining conflicts,
explaining failures, and further explaining knowledge
provenance.

Conclusions
If cognitive agents are to achieve their potential as trusted
assistants, they must be able to explain their actions and
recommendations. In this paper, we presented our
explanation infrastructure and describe our implementation
for the CALO cognitive assistant. While we focused in this
paper on explaining the core task processing component,
our solution provides a uniform way of encoding task
execution as well as deductive reasoning and learning
components as task processing justifications. Additionally,
the approach is integrated with the Inference Web
infrastructure for supporting knowledge provenance so that
explanations derived from task processing justifications
may be augmented with source information, improving
end-user understanding of answers. Further evaluation has
demonstrated that a better understanding of answers by
users is a key factor for users to establish trust in cognitive
assistants. The primary contributions of this paper are (1)
the design and reference implementation of a general and
reusable explanation infrastructure for cognitive assistants
that integrate task processing, deductive reasoning, and
learning; and (2) a supporting design describing the
necessary information for explaining task processing in
changing environments (including the specification of the
relevance, applicability, termination strategy, and the

categorization of explanation requests and follow-up
strategies), with a focus on changing environments, such as
those being updated by learners.

Acknowledgements
We gratefully acknowledge funding support for this effort
from the Defense Advanced Research Agency (DARPA)
through contract #55-300000680 to-2 R2. We thank
Cynthia Chang, Vasco Furtado, Karen Myers, Jim Blythe,
Ken Conley, and David Morley for helpful collaborations
and feedback on this work.

References
CALO, 2006. http://www.ai.sri.com/project/CALO
Glass, A. and McGuinness, D.L. 2006. Introspective
Predicates for Explaining Task Execution in CALO,
Technical Report, KSL-06-04, Knowledge Systems, AI Lab.,
Stanford Univ.

Hayes-Roth, B. 1985. A Blackboard Architecture for Control.
Artificial Intelligence 26(3):251-321.

Integrated Learning, 2006. www.darpa.mil/ipto/programs/il/
Johnson, W. 1994. Agents that Explain Their Own Actions. 4th

Conference on Computer Generated Forces and Behavioral
Representation.

McGuinness, D. L., Pinheiro da Silva, P. 2004. Explaining
Answers from the Semantic Web: The Inference Web
Approach. Journal of Web Semantics. 1(4), 397-413.
http://iw.stanford.edu

McGuinness D.L., van Harmelen F. 2004. OWL Web
Ontology Language Overview, Technical Report, World
Wide Web Consortium (W3C), February. Recommendation.

McGuinness, D.L., Ding, L., Glass, A., Chang, C., Zeng, H., and
Furtado, V. Explanation Interfaces for the Semantic Web: Issues
and Models. Proceedings of the 3rd International Semantic Web
User Interaction Workshop (SWUI'06). Athens, Georgia,
November, 2006.

McGuinness, D.L., Pinheiro da Silva, P., and Wolverton, M.
2005. Plan for Explaining Task Execution in CALO, Tech.
Report, KSL-05-11, Knowledge Systems, AI Lab., Stanford
Univ.

McGuinness, D.L., Zeng, H., Pinheiro da Silva, P., Ding, L.,
Narayanan, D., and Bhaowal, M. 2006. Investigations into
Trust for Collaborative Information Repositories: A
Wikipedia Case Study. WWW2006 Workshop on the
Models of Trust for the Web (MTW’06), Edinburgh,
Scotland.

Mellish, C. and Evans, R. 1989. Natural Language Generation
from Plans. Computational Linguistics, 15(4).

Morley, D. and Myers, K. 2004. The SPARK Agent
Framework. 3rd International Joint Conference on
Autonomous Agents and Multi Agent Systems (AAMAS-04),
New York, NY: 712-719. http://www.ai.sri.com/~spark/

Myers, K. 2006. Metatheoretic Plan Summarization and
Comparison. International Conference on Automated
Planning and Scheduling (ICAPS-06).

PAL, 2006. http://www.darpa.mil/ipto/programs/pal/
Pinheiro da Silva P., McGuinness D. L., Fikes R.. A Proof
Markup Language for Semantic Web Services, Information
Systems, Volume 31, Issues 4-5, June-July 2006, pp 381-395.
Also, Stanford Technical Report, KSL-04-01.

Pinheiro da Silva, P, McGuinness, D., McCool, R. 2003.
Knowledge Provenance Infrastructure. IEEE Data Engineering
Bulletin 26(4), pp. 26-32.

Rao, A.S. and Georgeff, M.P. 1995. BDI Agents: From Theory
to Practice. Proceedings of the First International Conference on
Multiagent Systems, San Francisco, CA.

Schulman, R. and Hayes-Roth, B. 1988. Plan-Based
Construction of Strategic Explanations, Technical Report,
KSL-88-23, Knowledge Systems Lab., Stanford Univ.

Scott, A., Clancey, W., Davis, R., and Shortliffe, E. 1984.
Methods for Generating Explanations. In Buchanan, B. and
Shortliffe, E. (eds.), Rule-Based Expert Systems, Addison-
Wesley.

Wick, M. and Thompson, W. 1992. Reconstructive Expert
System Explanation. Artificial Intelligence 54(1-2): 33-70.

Young, R. 1999. Using Grice’s Maxim of Quantity to Select
the Content of Plan Descriptions. Artificial Intelligence
115(2).

Zaihrayeu, I., Pinheiro da Silva, P., and McGuinness, D.L.
2005. IWTrust: Improving User Trust in Answers from the
Web. Proceedings of the 3rd International Conference on
Trust Management (iTrust2005), Springer, Rocquencourt,
France, pp. 384-392.

