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Abstract 

As personal assistant software matures and assumes more 
autonomous control of its users’ activities, it becomes more 
critical that this software can explain its task processing. It must 
be able to tell the user why it is doing what it is doing, and instill 
trust in the user that its task knowledge reflects standard practice 
and is being appropriately applied. We will describe the ICEE 
(Integrated Cognitive Explanation Environment) explanation 
system and its approach to explaining task reasoning. Key 
features include (1) an architecture designed for re-use among 
many different task execution systems; (2) a set of introspective 
predicates and a software wrapper that extract explanation-
relevant information from a task execution system; (3) a version 
of the Inference Web explainer for generating formal 
justifications of task processing and converting them to user-
friendly explanations; and (4) a unified framework for 
explanation in which the task explanation system is integrated 
with previous work on explaining deductive reasoning. Our work 
is focused on explaining belief-desire-intention (BDI) agent 
execution frameworks with the ability to learn.  We demonstrate 
ICEE’s application within CALO, a state-of-the-art personal 
software assistant, to explain the task reasoning of one such 
execution system.  

Introduction 
Personalized software assistants have the potential to 
support humans in everyday tasks by providing assistance 
in cognitive processing. If these agents are expected to 
achieve their potential and perform activities in service of 
humans (and possibly other agents) then these agents need 
to be fully accountable. Before their users can be expected 
to rely on cognitive agents, the agents need to provide the 
users with justifications for their decisions, including that 
those decisions are based on appropriate processes that are 
correct and on information that is accurate and current.  
The agents need to be able to use these justifications to 
derive explanations describing how they arrived at a 
particular recommendation, including the ability to abstract 
away detail that may be irrelevant to the user’s 
understanding and trust evaluation process. Further, if the 
agents are to be used to perform tasks, they need to explain 
how and under what conditions they will execute a task.  
Additionally, if their information and procedure base is 
being updated, potentially by learning algorithms, they 
may need to explain what has changed and why it has been 
changed. 

 
One significant challenge to explaining cognitive assistants 
is that these assistants, by necessity, include task 
processing components that evaluate and execute tasks, as 
well as reasoning components that take input and 
determine conclusions.  Thus, a cognitive assistant 
explainer will need to explain task processing responses as 
well as results of more traditional reasoning systems.   An 
explanation solution thus must be able to encode, analyze, 
and summarize justifications of task execution along with 
other forms of reasoning, providing access to both 
inference and provenance information, which we refer to 
as knowledge provenance (Pinheiro da Silva, McGuinness, 
McCool, 2004).  
 
Work has been done in the theorem proving community as 
well as in many specialized reasoning communities 
including description logics, expert systems, and FOL 
systems, to explain deductions.  A limited amount of work 
has also been done in the task execution community on 
explaining task processing.  What has not been done is 
work explaining task execution in a way that is also 
appropriate for explaining deductive reasoning and 
provenance. Our work provides a uniform approach to 
representing and explaining results (including provenance) 
from both communities, with the additional emphasis on 
providing explanations of learned information.  
  
Our design and implementation work is in the setting of the 
DARPA Personalized Assistant that Learns (PAL) 
program, as part of the Cognitive Assistant that Learns and 
Organizes (CALO) project.  In the CALO system, which 
includes work from 22 different organizations, the heart of 
the cognitive assistant is a belief-desire-intention (BDI) 
architecture (Rao & Georgeff, 1995).  This presents a 
complex explanation challenge where CALO must explain 
conclusions from multiple knowledge sources, both hand 
built and automatically generated, with multiple reasoning 
techniques including task processing, deduction, and 
learning.  In this paper, we will present our representation, 
infrastructure, and solution architecture for explaining 
BDI-based task processing; describe how it has been 
implemented in our new Integrated Cognitive Explanation 
Environment (ICEE); and show how it has been used to 
explain cognitive assistants.  We also discuss preliminary 
results from a study of CALO users that show how 
explanation can be a key component in building user trust 



in cognitive assistants, particularly when those assistants 
are being updated by learning components. 

Motivating Scenario 
As a motivating scenario, we provide an example from the 
CALO office domain.  In this example, the cognitive agent 
is working in the role of an office assistant, and has been 
tasked with purchasing a laptop for its user.  In order to 
accomplish the high-level goal of buying a laptop, the 
cognitive agent uses a simple three step process with a 
laptop specification as input. 
 
The first subtask, GetQuotes, requires the agent to obtain 
three quotes from three different sources. The second 
subtask, GetApproval, requires a particular form to be 
signed by an approval organization representative.  The 
final subtask, SendOrderToPurchasing, requires a 
requisition form to be sent to purchasing.  Note that in 
sequential tasks such as these, the termination condition of 
a previous subtask is typically a pre-condition to the next 
subtask. 
 
The user may ask for an explanation of the agent’s 
behavior at any time.  ICEE provides a display of the 
current tasks/subtasks and a dialogue interface to 
explaining the agent’s actions.  The user can request 
explanations by starting a dialogue with any of several 
supported explanation request types.  For example: 
 
  “Why are you doing <subtask>?” 
 
This question is an example of an explanation request 
concerning the motivation for a task.  Other task 
explanation request types include questions about status, 
execution history, forward-looking execution plans, task 
ordering, or explicit questions about time (for example, 
starting/completion times and execution durations).  ICEE 
also handles extensive questions about task provenance, 
including explanations about the requestor of a task and the 
source of the represented procedure which is being 
executed by the system.  These questions have been guided 
by an initial study focused on how to build user trust in 
cognitive agents. 
 
ICEE contains one or more explanation strategies for each 
explanation request type.  Based on context such as system 
status and past interactions, in addition to a model of the 
user, ICEE chooses one strategy. We have documented a 
set of question classes for cognitive assistants and designed 
explanation strategies for explanation request types 
(McGuinness et al. 2005).  For example, in response to the 
above question, ICEE may choose the simple strategy of 
revealing the task hierarchy: 
 

 “I am trying to do <high-level-task>, and <subtask> 
is one subgoal in the process.” 

 

For each explanation request, ICEE can either reuse an 
existing task justification, which includes a task execution 
trace, or build and parse a new justification. Then ICEE 
presents as explanations the portions of the justification 
that are relevant to the query and explanation strategy.  
Additionally, ICEE suggests follow-up explanation 
requests for the user, enabling mixed initiative dialogue 
between the agent and the user.  For example, follow-up 
questions in the above scenario might include: 
 
  “Why are you doing <high-level-task>?” 
  “Why haven’t you completed <subtask> yet?” 
  “Why is <subtask> a subgoal of <high-level-task>?” 
  “When will you finish <subtask>?” 
  “What sources did you use to do <subtask>?” 
 
This last example follow-up question in particular makes 
use of task provenance information, necessitating that the 
system keep track of sources used for both knowledge and 
task information. 

The ICEE System 

Architecture Overview 
The architecture of ICEE (shown in Figure 1) is designed 
to be flexible and allow explanations to be derived from 
justifications gathered seamlessly from a variety of task 
processing and knowledge systems.  An explanation 
dispatcher gathers structured explanation requests from the 
user through a collaboration agent or user interface. The 
assistant’s user interface provides specialized mechanisms 
for users to request explanations. 
 
Based on the type of the explanation request, the 
explanation dispatcher determines which explainer will 
handle the request, and forwards it to the proper explainer 
component, to identify relevant strategies and gather 
necessary information from the associated external 
component.  For questions related to task processing, the 
Task Manager (TM) explainer handles the request.  The 
TM explainer instructs the TM wrapper to gather task 
processing information about the requested tasks.  The TM 
wrapper is closely coupled with a BDI execution system, 
or task manager.  We have provided a TM wrapper for the 
task execution system used in CALO, which is based on 
the SRI Procedural Agent Realization Kit (SPARK); 
however, any similar task execution system could be 
similarly enhanced with explanation capabilities. 
 
The TM wrapper stores the gathered task processing 
information in the task state database.  This database is 
then used by the justification generator to create a 
justification for the tasks currently under execution, 
including any additional processing that is related to the 
current tasks.  The generated justification can then be used 
by the TM strategies to create alternative explanations and 



select the one most salient to the user’s questions.  The 
explanation dispatcher returns the selected explanation to 
the collaboration agent for appropriate display to the user.  
Each of these architectural components is discussed below. 

Task Oriented Processing 
Any complex cognitive agent must have a mechanism for 
representing and executing tasks.  A belief-desire-intention 
(BDI) model is a common framework for task reasoning 
components.  BDI systems cover a range of execution 
capabilities, including hierarchical task encoding, control 
of procedural agent behavior, sequential and/or parallel 
execution of sub-procedures, conditional execution and 
branching, flexible procedure preconditions, and meta-
level reasoning to determine which applicable procedure to 
pursue. 
 
Task management in CALO is provided by SPARK 
(Morley & Myers 2004), one such BDI agent framework, 
which maintains sets of procedures that define agent 
actions. The CALO Task Manager’s knowledge base of 
procedures includes human-authored procedures along 
with procedures that were partially or completely learned 
based on evolving information.  ICEE gathers information 
on both static aspects of procedures within SPARK as well 
as dynamic information about its past and current 
execution state.  

Introspective Predicates 
ICEE is designed to provide the users of cognitive agents 
with the ability to ask detailed questions about task 
execution and to engage in a mixed initiative dialogue 
about its past, current, and future task execution.  To 
provide detailed explanations of the behavior of the task 
processing system, justifications must be annotated with 
enough meta-data to support a wide range of behaviors.  
Particularly when answering complex questions, an 

explanation system must have access to information about 
many aspects of execution and planning. 
 
To allow usable, detailed explanations to be generated, a 
task execution system must expose this meta-information.  
One of our contributions is a specification of a set of 
introspective predicates that were designed to provide 
access to meta-information required for explainable task 
processors.  
 
These introspective predicates fall into three categories: 
 

1. Basic Procedure Information: relatively stable, 
static information that is not dependant on when or 
how a task is executed.  Provenance information 
about how task definitions have been created or 
learned is a key aspect of these introspective 
predicates. 

2. Execution Information: dynamic information that is 
generated as a task begins being executed, and 
remains valid in some form throughout the 
execution of that task. This information also 
includes history related to completed tasks. 

3. Projection Information: information about future 
execution, as well as alternatives for decision points 
that have already passed. 

 
A task execution system, such as SPARK, that provides 
access to this set of introspective predicates can be linked 
to ICEE and allow it to fully explain all the question types 
and strategies described above.  Details on the 
introspective predicates can be found in (Glass & 
McGuinness 2006). 

Wrapper, Action Schema and Action Database 
In order to collect explanation-relevant information from 
the task execution agent and store it in a format 
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Figure 1:  ICEE architecture.  Shaded boxes show how additional explanation capabilities (beyond explaining task reasoning) 
are integrated into the overall framework; these additional components are not discussed in this paper. 



understandable by the explainer, we designed and built a 
wrapper for SPARK and an intermediate action schema in 
which to record task execution information. These 
elements were designed to achieve three criteria: 
• Salience. The wrapper should obtain information about 

an agent’s processing that is likely to address some 
possible user information needs. 

• Reusability. The wrapper should obtain information that 
is also useful in other cognitive agent activities that 
require reasoning about action—for example, state 
estimation and procedure learning. 

• Generality. The schema should represent action 
information in as general a way as possible, covering 
the action reasoning of blackboard systems, 
production systems, and other agent architectures. 

 
The wrapper collects a snapshot of SPARK’s current 
processing state as well as the previous decisions that led 
to that state. It uses SPARK’s expanded introspective 
predicates to extract the portions of its underlying intention 
structure relevant to its current intentions, building this 
structure by recursively querying for the supporting 
elements of intentions and procedures.  Example queries 
include: What are the agent’s current intentions?  What is 
the procedure instance that led to intention X?  What are 
the preconditions that were met before procedure P could 
be executed? 
 
After collecting the snapshot, the wrapper stores it in a 
SPARK-independent task execution action database.  A 
portion of the schema of the action database is shown in 
Figure 2.  This schema reflects that most task execution 
systems share the same common structure.  While the 
current terminology in our schema is consistent with 
SPARK’s, the concepts are general and consistent with 
other cognitive architectures. For example, “procedures” in 
our schema are equivalent to  “knowledge sources” in BB* 
and other blackboard architectures, “procedure instances” 
are equivalent to “Knowledge Source Activation Records 

(KSARs)”, etc. (Hayes-Roth 1985).  The database records 
the relationships between key entities relevant to the 
agent’s current state, for example, which intentions were 
established by which procedure instances, which procedure 
a given procedure instance instantiates, which variables 
were bound (and to what value) within a given procedure 
instance, and which of a procedure’s termination 
conditions were satisfied and which were not. 
 
Our approach of creating a system-specific wrapper and a 
generic action schema achieves multiple design goals.  
Because the action schema is generic across multiple task 
execution systems, only a new wrapper is needed in order 
to explain a cognitive agent using a task management 
system other than SPARK; no change to the justification 
representation discussed below is needed, and the same 
explanation strategies can be used.  Additionally, the action 
schema can be reused by other components in the overall 
cognitive agent architecture for purposes beyond 
explanation, such as state capture, time-line archiving, or 
snapshotting. 

Generating Formal Justifications 
A cognitive agent’s actions should be supported by 
justifications that are used to derive and present 
understandable explanations to end-users.  These 
justifications need to reflect both how the actions support 
various user goals, and how the particular actions chosen 
by the agent were guided by the state of the world.  More 
specifically, our approach to task justification breaks down 
the justification of a question about a particular task T into 
three complementary strategies, described here using 
terminology from SPARK:  
 

• Relevance: Demonstrate that fulfilling T will 
further one of the agent’s high-level goals, which 
the user already knows about and accepts 

• Applicability: Demonstrate that the conditions 

Figure 2:  A portion of the action schema used to store task execution information. 



necessary to start T were met at the time T started 
(possibly including the conditions that led T to be 
preferred over alternative tasks) 

• Termination: Demonstrate whether one or more of 
the conditions necessary to terminate T has not 
been met. 

 
This three-strategy approach contrasts with previous 
approaches to explanation, most of which dealt with 
explaining inference (Scott et al. 1984, Wick & Thompson 
1992). Previous approaches generally have not dealt with 
termination issues, and they also generally have not 
distinguished between relevance and applicability 
conditions.  These are critical aspects of task processing 
and thus are important new issues for explanation.   
 
Justifications can be seen and represented as proofs of how 
information was manipulated to come to a particular 
conclusion.  We have chosen to leverage the Inference 
Web infrastructure (McGuinness & Pinheiro da Silva, 
2004) for providing explanations.  Inference Web was 
designed to provide a set of components for representing, 
generating, manipulating, summarizing, searching, and 
presenting explanations for answers from question 
answering agents in distributed heterogeneous 
environments such as the Web.  At Inference Web’s core is 
an Interlingua for representing provenance, justification, 
and trust encodings related to answers called the Proof 
Markup Language (PML) (Pinheiro da Silva, McGuinness, 
& Fikes, 2006).  Inference Web and PML provide our 
basic building blocks for representing and manipulating 
information concerning how recommendations are 
generated and what they depend on.   Our work demanded 
a method for sharing justifications across the many 
components in CALO.  PML provided an Interlingua and it 
was already being used to encode explanations for answers 
generated by an array of reasoning and text extraction 
systems.  Prior to this effort, Inference Web and PML had 
not been used to explain learning results or task execution 
engines.  
 
PML provides core representational constructs for 
provenance (source, author, etc.), information 
manipulation steps (antecedent, consequent, inference rule, 
etc.), and trust.  Inference Web also provides tools for 
interactive web browsing of PML as well numerous UI 
tools for presenting summaries, dialogue interfaces, 
validators, search modules, etc. (McGuinness, et al, 2006).     
PML documents contain encodings of behavior 
justifications using PML node sets.  An OWL 
(McGuinness & van Harmelen 2004) specification of all 
PML terms is available, which separates out provenance1, 
justifications2, and trust3.  PML node sets are the main 
building blocks of OWL documents describing 
                                                 
1 http://iw.stanford.edu/2006/06/pml-provenance.owl 
2 http://iw.stanford.edu/2006/06/pml-justification.owl 
3 http://iw.stanford.edu/2006/06/pml-trust.owl 

justifications for application answers published on the 
Web. 
 
Each node set represents a step in a proof whose 
conclusion is justified by any of a set of inference steps 
associated with a node set. A task execution justification is 
always a justification of why an agent is executing a given 
task T. The final conclusion of the justification is a FOL 
sentence saying that T is currently being executed.  There 
are three antecedents for this final conclusion, 
corresponding to the three strategies discussed above. Each 
antecedent is supported by a justification fragment based 
on additional introspective predicates.  
 
It is important to note that all the task processing 
justifications share a common structure that is rich enough 
to encode provenance information needed to answer the 
explanation requests identified so far. By inspecting the 
execution state via introspective predicates, explanation 
components can gather enough provenance information to 
support a wide range of explanations.  

Producing Explanations  
Different users may need different types of explanations.   
In order to personalize explanations, ICEE uses 
explanation strategies. An explanation strategy provides a 
method for retrieving provenance and inference 
information from justifications, selecting the information 
relevant to the user’s request, and presenting the 
information to the user.  Given the wide range of questions 
that a user might want to ask a complex cognitive agent, 
we conducted a study which helped us to identify which 
questions users would find more immediately helpful in 
their daily interactions with a system like CALO.  The 
feedback from these users motivates our choice of 
supported explanation strategies and follow-up questions, 
and is further discussed in the next section. 
 
User modeling and strategy selection are handled by the 
explanation dispatcher. Currently, user modeling is 
restricted to user preferences.  Additional approaches based 
on user interaction and machine learning techniques are 
under investigation.  
 
The explanation strategies are closely tied to the 
explanation request types discussed above.  In the example 
scenario presented earlier, the user asked a question about 
the motivation for a subtask, and the explanation used a 
strategy of revealing task hierarchy.  Other strategies 
include providing a task abstraction, exposing 
preconditions or termination conditions, revealing meta-
information about task dependencies, or explaining 
provenance information related to task preconditions or 
other task knowledge.  See (McGuinness et al. 2005) for 
more details on ICEE’s explanation strategies. 
 
ICEE also provides context-dependent follow-up questions 
for the user. Follow-up questions might include requests 



for additional detail, clarifying questions about the 
explanation that has been provided, or questions essentially 
requesting that an alternate strategy be used to answer the 
original question.  Figure 3 shows an example user 
interface linked to ICEE, in which a list of currently 
executing tasks is provided to the user.  The user has 

requested an explanation of the motivation for a subtask of 
the first task, and an explanation is provided along with 
three suggested follow-up questions.  

Establishing Trust in Cognitive Agents  
To evaluate the use and effect of explanation in cognitive 
agents, we conducted a preliminary trust study among a set 
of CALO users.  Using a structured interview format, we 
studied 10 users who performed a variety of tasks with 
individual CALO agents over approximately two weeks.  
We had two primary aims for this study: 
 

 To identify what factors users believe influence 
their trust in a complex cognitive agent. 

 To identify which types of questions, if any, users 
would like to be able to ask a cognitive assistant 
to better understand the assistant’s answers. 

 
Preliminary results from this study show that 
understanding the results, including any unexpected results 
(e.g., inconsistencies), and thus establishing trust in a 
system as complex as CALO, requires a multi-pronged 
approach.  While trust in any system generally requires a 
series of positive interactions over an extended period of 
time, the complexity and constant change of an adaptive 
agent presents additional issues.  Many users identified two 
key factors that would aid in building trust. 
 
The first factor is transparency.  The users in our study had 
varying levels of familiarity with the components of 
CALO, ranging from an active developer familiar with the 
algorithms being used in the system, to a user with no prior 
knowledge of the project. Regardless of their familiarity 
with the system or their technical background, most users 
were leery of the opaqueness of the system.  When actions 

were taken by the system for which the underlying 
computational reasoning was not apparent, the users 
mistrusted the results.  Even when results appeared 
reasonable, they sought to verify the results rather than 
trusting them outright, fearful that a result may be 
anecdotal or based on inappropriate information.  These 
users identified explanations of system behavior, providing 
transparency into its reasoning and execution, as a key way 
of understanding answers and thus establishing trust. 
 
The second factor is provenance.  Many users commented 
that, when presented with a result in CALO, they did not 
know whether they could trust the result because they did 
not know what source information was used by the system.  
These users reported that explanations of source 
provenance would enable them to trust results without the 
need for much, if any, further verification. 
 
Previous work on building trust recommendations 
(Zaihrayeu  et al., 2005; McGuinness et al. 2006) has 
shown the complexity of understanding the notion of trust, 
and how explanation of deductive reasoning can help users 
to establish and build trust.  We believe that explanation of 
task execution in cognitive agents, particularly in the 
presence of learned behaviors and information, can 
similarly be key to helping users to build trust in these 
complex assistants.  We are continuing to evaluate the 
results of our trust study, and plan to use the results to 
guide our future work. 

Related Work and Discussion  
There has been an abundance of work in explaining expert 
systems and, to a lesser extent, explaining automated 
reasoning systems. Most of these have focused on some 
notion of explaining the deductive trace of declarative 
rules.   Previous work on Inference Web and related work 
explaining hybrid reasoners added to the field by focusing 
on settings that are web-based or distributed.  Our current 
work further expands the coverage by using an approach 
that can support explanations of task executions in the 
presence of learned knowledge in combination with that of 
declarative rule processing, along with provenance. 
 
The literature on automated explanation research that 
explicitly addresses explaining actions is sparse. (Johnson 
1994) presents a module to explain a Soar agent’s actions 
by reconstructing the context in which action decisions 
were made, and then tweaking that context (hypothetically) 
to discover the elements of the context that were critical to 
the decision. While Johnson’s approach does have some 
similarities with the way we handle gating conditions, it 
does not deal with relevance and termination strategies that 
are important to our agent explanation module. Earlier, 
(Schulman and Hayes-Roth 1988) developed a BB1 
module that explains actions using the architecture’s 
control plan, but it does not address explaining when the 
control plan does not exist, as is the case in CALO and 

Figure 3:  An example explanation dialogue, with 
suggested follow-up questions. 



most other intelligent architectures. Work on plan 
description (Mellish & Evans 1989, Young 1999, Myers 
2006) has focused on summarizing an agent’s aggregate 
behavior (i.e., its entire plan), rather than justifying 
individual task choices.  Our work thus fills an important 
gap in explaining agent actions, providing fine-grained 
explanations of a wide range of agent activities, taking into 
account more aspects of BDI agent architectures, including 
relevance and termination issues (while using an approach 
that is compatible with explaining hybrid reasoning 
components, such as standard FOL reasoners).  One 
promising area of future work would be to allow the user 
to switch between coarse-grained and fine-grained 
explanations of agent activity, combining our work with 
the previous approach. 
 
Our current work is driven by the needs of explaining 
cognitive assistants.  This focus by necessity forces us to 
address the issue of explanation infrastructures and 
architectures that can work with task execution systems as 
well as with deductive reasoners and learning components.  
This paper has addressed our current progress on designing 
and implementing an extensible and flexible architecture 
that is capable of explaining the breadth required by 
cognitive assistants.  
 
To start this work, we produced an enumeration and 
categorization of classes of cognitive assistant explanations 
(McGuinness, et al., 2005), which was further motivated 
and refined using the initial results of the CALO trust study 
previously described. 
 
We also analyzed the existing execution environment to 
identify the actions taken that would need to be explained, 
leading to a characterization of the SPARK execution 
environment.  We believe that this characterization is 
representative not just of SPARK, but also of other agent 
architectures, most notably BDI-based agents and 
blackboard-based systems. The above characterization is 
integrated with an explanation architecture capable of 
explaining standard reasoners and hybrid theorem proving 
environments.  For example, we are currently designing an 
explanation architecture based on this approach that is to 
be used in a new system (GILA – the Generalized 
Integrated Learning Architecture – funded by the DARPA 
Integrated Learning program (IL 2006)).  The program is 
still in an early stage, but initial indications support our 
hypothesis of leveragability across adaptive learning agent 
architectures for broad re-use. 
 
Our architecture and implementation described here 
demonstrates that an explanation mechanism initially 
designed for explaining deductive reasoning can also be 
successfully applied to explaining task-oriented reasoning.  
Further, we focused efforts on explaining a complex task 
execution system at the heart of our (and potentially any) 
cognitive assistant. We developed a three strategy 

approach to explaining task execution including relevance, 
applicability, and termination. 
 
Our contributions include key ideas for explaining task 
processing, such as the distinction between relevance and 
applicability and the new work on termination.  
Additionally, work devoted simply to explaining task 
execution has not traditionally focused on explaining a 
broader setting including deduction and provenance. We 
developed a framework for extracting and representing the 
state and history of a task system’s reasoning, a framework 
that is already proving to be useful for building trust and 
explanation services in other agent activities.  
 
Work on simply explaining task execution and deduction 
may not be adequate by itself to establish user trust. 
Knowledge provenance must also be considered.  Our 
integrated framework includes a component that provides 
access to sources used and meta-information concerning 
the sources.  The current ICEE system includes initial 
implementations of all of the components described above, 
and is seeded with a limited number of strategies, as 
prioritized by our trust study.  Current and future work 
includes expanding these components to provide more 
advanced functionality; additional capabilities for handling 
the results of procedure learning (including learning from 
instruction and learning from demonstration) that extend 
and/or update the procedures that the task execution system 
uses; as well as a strong focus on explaining conflicts, 
explaining failures, and further explaining knowledge 
provenance.   

Conclusions 
If cognitive agents are to achieve their potential as trusted 
assistants, they must be able to explain their actions and 
recommendations.  In this paper, we presented our 
explanation infrastructure and describe our implementation 
for the CALO cognitive assistant. While we focused in this 
paper on explaining the core task processing component, 
our solution provides a uniform way of encoding task 
execution as well as deductive reasoning and learning 
components as task processing justifications.  Additionally, 
the approach is integrated with the Inference Web 
infrastructure for supporting knowledge provenance so that 
explanations derived from task processing justifications 
may be augmented with source information, improving 
end-user understanding of answers. Further evaluation has 
demonstrated that a better understanding of answers by 
users is a key factor for users to establish trust in cognitive 
assistants. The primary contributions of this paper are (1) 
the design and reference implementation of a general and 
reusable explanation infrastructure for cognitive assistants 
that integrate task processing, deductive reasoning, and 
learning; and (2) a supporting design describing the 
necessary information for explaining task processing in 
changing environments (including the specification of the 
relevance, applicability, termination strategy, and the 



categorization of explanation requests and follow-up 
strategies), with a focus on changing environments, such as 
those being updated by learners. 
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