
 �

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

In this chapter, we introduce the concept of explanation for Semantic Web applications by providing 
motivation, description, and examples. We describe the Inference Web explanation toolkit that provides 
support for a broad range of explanation tasks ranging from explaining deductive reasoning, to infor-
mation extraction, to hybrid integrated learning systems. We argue that an explanation solution such 
as the one we endorse is required if we are to realize the full potential of hybrid, distributed, intelligent 
Web agents that users can trust and use.
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Introduction 

Question answering on the Semantic Web (SW) 
typically includes more processing steps than 
database retrieval. Question answering can be 
viewed as an interactive process between a user 
and one or more intelligent software agents. 
Using queries, user preferences, and context, 
intelligent agents may locate, select and invoke 
services and, if necessary, compose these services 
to produce requested results. In other words, the 
web paradigm shifts from one where users mainly 
retrieve explicitly stated stored information to a 
paradigm where application results are answers 
to potentially complex questions that may require 
inferential capabilities in addition to information 
retrieval. Web applications with question answer-
ing capabilities may still use information retrieval 
techniques to locate answers, but they may also 
need to use additional semantics such as encoded 
term meanings to support additional methods of 
information access (such as targeted database 
queries or knowledge base queries) along with 
information manipulations (such as reasoning 
using theorem provers, or inductive or deductive 
methods). Examples of this new, more complex 
reality include the automatic composition of web 
services encoded in OWL-S or semi-automatic 
composition of services as provided by workflows. 
Ontology-enhanced search is another example of 
how Semantic Web technology can provide and is 
providing new directions for a category of “smart” 
search applications. Many other SW applications 
are emerging with a common theme of increas-
ing knowledge and autonomy. This new context 
generates an additional requirement for effective 
use of SW applications by typical users: appli-
cations must provide explanation capabilities 
showing how results were obtained. Explanations 
are quickly becoming an essential component in 
establishing agent credibility (e.g., Glass et al, 
2008) and result credibility (e.g., Del Rio and 

Pinheiro da Silva, 2007) by providing process 
transparency, thereby increasing user understand-
ing of how results are derived. Explanations can 
also identify information sources used during the 
conclusion derivation process. In the context of 
the SW, explanations should be encoded in a way 
that they can be directly or indirectly consumed 
by multiple agents, including both human users 
and software systems. 

In this chapter we describe explanation as a 
special kind of pervasive SW functionality, in the 
sense that a SW application may need to provide 
transparency concerning its results. We first ana-
lyze some distinct application paradigms in the 
SW context, and for each paradigm we identify 
explanation requirements. We then describe a 
general framework, called Inference Web (IW) 
(McGuinness and Pinheiro da Silva, 2004) that 
includes the Proof Markup Language (PML) 
(McGuinness, et al., 2007, Pinheiro da Silva, Mc-
Guinness, Fikes, 2006), a modularized ontology 
describing terms used to represent provenance, 
justifications and trust relations. IW includes a set 
of tools and methods for manipulating PML-en-
coded result justifications. Using Inference Web, 
and its PML interlingua, applications may provide 
interoperable and portable explanations that sup-
port intelligent, interactive application interfaces. 
After the description of the IW framework and 
the PML interlingua, we will exemplify how PML 
and IW have been used to explain the results and 
behaviors of a wide range of applications including 
intelligent personal agents, information extraction 
agents, and integrated learning agents. 

A Conceptual Framework 
for Explaining Results from 
Semantic Web Applications

We investigate the correspondence between SW 
application paradigms and their explanation 
requirements. 
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Semantic Web Application 
Characterization

SW applications are geared to take advantage 
of vast amounts of heterogeneous data with po-
tentially varying amounts of semantic markup. 
They concentrate on identifying and meaningfully 
combining available semantic markup in order to 
derive complex results. Below we briefly charac-
terize the SW applications features considered 
important from an explanation perspective: col-
laboration, autonomy, and use of ontologies. 

Collaboration

Collaboration requires agents to interact and 
share knowledge with the common goal of solv-
ing a particular problem. Collaboration raises 
issues concerning how to create, use, and share 
a combination of provenance, trust and reputa-
tion throughout distributed reasoning processes. 
Wikis, for example, are gaining popularity as 
collaborative tools for human agents, although 
they do not provide a precise infrastructure for 
recording and reusing provenance information. 
A Semantic Wiki is a wiki application enhanced 
with Semantic Web technologies that support 
wiki content annotation that goes beyond simple 
structured text and untyped hyperlinks. Semantic 
Wikis provide the ability to represent metadata 
about content, term meanings, and inter-relation-
ships. Provenance support is typically somewhat 
limited, in both ordinary wikis and in semantic 
wikis, to keeping track of which author (if a login 
authentication process is included) made which 
updates and when. 

Content Management Systems (CMS) are one 
of the most common uses of wikis for knowledge 
management. Semantic Wikis aim to enhance 
ordinary wikis by allowing users to make their 
internal knowledge more explicit and formal, 
enabling search methods that go beyond simple 
keyword search. In this case, provenance infor-

mation may be included in these searching capa-
bilities. Other collaborative systems are aimed 
at Personal Information Management (PIM) or 
community knowledge management. The ability 
to store project history, and to utilize tools that 
access and perform intelligent queries over this 
history, is one of the benefits brought by Semantic 
Wikis used for content management. 

The collaborative characteristic is also promi-
nent in applications developed via the integra-
tion of multi-agent systems and Semantic Web 
services. In this situation, collaborating agents 
are software programs such as digital assistants 
that manage electronic information. These col-
laborating agents can proactively engage in tasks 
on behalf of their users to find, filter, assess and 
present information to the user in a more ap-
propriate manner (Maes, 1994). Several types 
of multi-agent applications have been developed 
such as office organization (Pyandath & Tambe, 
2002); technical support (Sullivan et al. 2000); 
and information retrieval (Rhodes et al., 1996). 
Again, most of these collaborating agents provide 
little support for storing and retrieving provenance 
information about how they work internally, and 
in particular, they provide only limited access to 
information about how they collaborate. However, 
end user activities may require the integration of 
multi-agent systems and Semantic Web services. 
Personal agents may also need user models, to 
allow them to better perform tasks in compliance 
with user needs and preferences. 

Distributed solutions for multi-agent problems 
can alternatively be represented using a reac-
tive multi-agent architecture. In these domains, 
the individual agents have little autonomy. The 
“intelligence” used to solve problems comes 
from intensive inter-agent communication. This 
paradigm is typically used on the web, where 
heterogeneity and loosely-coupled distributed 
systems are common. Thus, interactions between 
agents or system components must not be rigidly 
specified at design time, but opportunistically built 
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though the use of new services as they become 
available. Prior knowledge of such services is 
thus not necessary (and often not practical nor 
desirable). Instead, agents must discover services 
by accessing a service description that can be 
semantically described by means of ontologies 
in which descriptive expressions or concepts are 
attached to services. 

Autonomy

An individual agent’s autonomy controls its 
ability to act independently. Barber and Martin 
(1999) consider an agent’s degree of autonomy 
with respect to a particular goal that the agent is 
actively pursuing. Within this context, they define 
the degree of autonomy to be (1) the degree to 
which the decision making process was used to 
determine how that goal should be pursued; and 
(2) how free the agent is from intervention by 
other agents. Traditional web-based applications 
have very little autonomy, since they primarily 
take direct input from the user and retrieve infor-
mation consistent with the query. For example, a 
typical web search engine’s primary interaction 
mechanism is based on communication between 
the user and the search engine. The degree of 
autonomy of the search engine is said to be low 
because the user is required to reformulate and 
resubmit the query when the original query is 
not satisfactorily answered by the engine. In 
contrast with typical search engines, SW ap-
plications have more autonomy while pursuing 
goals. For example, online shopping agents have 
autonomy over how to find answers to shopping 
queries concerned with product location, price 
comparison, or rating information. ShopBot can 
make several autonomous decisions, such as 
which content sources to use, which services to 
call and compose, and how to enhance the query 
with background representation information, all 
in an attempt to answer the user’s question as 
efficiently and usefully as possible. In general, 

the development of autonomous problem-solving 
software agents in the Semantic Web is increas-
ingly gaining popularity.

Use of Ontologies

Semantic Web applications are increasingly using 
large amounts of heterogeneous semantic data 
from multiple sources. Thus, the new generation 
of Semantic Web applications must be prepared 
to address issues associated with data of varying 
quality. Intelligence in these large-scale semantic 
systems comes largely from the system’s abil-
ity to operate effectively with large amounts of 
disparate data.. In this context, ontologies are 
used to support information integration as well 
as to identify inconsistencies between data com-
ing from multiple sources. Ontologies are being 
used to provide declarative specifications of term 
meanings. Agents can then decide to use a term 
meaning as specified in a particular ontology, 
and when multiple agents decide to use the same 
definition of a term (for example by referencing 
the same term in the same ontology), they can 
communicate more effectively. Usage of the same 
term, now with the same meaning, helps improve 
consistency across applications.

Content search and context search are other 
typical uses of ontologies. In content search, 
search engines use background knowledge bases 
to enhance queries and thus improve results. 
When the background knowledge bases contain 
term definitions, semantic query engines may 
be able to retrieve answers that are inferred by 
the query, no longer restricting the search to 
exact user-provided terms. Search engines can 
go beyond statistical clustering methods, which 
while effective, have limitations largely associ-
ated with training data sets. In context search, 
search engines may consider the user’s context 
when processing a search. For example, a search 
engine may utilize a user’s geographic location 
as well as known preferences when retrieving 
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answers. Information about geographic location 
and preferences may be encoded in background 
ontologies.

Ontologies describing domain knowledge, user 
preferences, and problem areas are often used in 
creating agents with reasoning capabilities. These 
ontologies are often used to establish a common 
vocabulary among multiple agents. Personal 
agents’ learning capabilities are also important, 
as such capabilities can increase the agents’ level 
of autonomy (e.g., the Cognitive Assistant that 
Learns and Organizes (CALO, 2008). Personal 
agents can act alone or communicate with others 
in order to accomplish their task; in these cases, 
ontologies describing communications protocols 
are also necessary.

Explanation Issues

Given these Semantic Web application features 
which impact the need for explanation, we iden-
tify a set of criteria for analyzing the required 
explanations. These criteria include such issues 
as whether explanations are expected to be con-
sumed by humans or machine agents; varying 
characteristics of these agents; and the resulting 
types of explanations that should be provided. 

Explanation Types

System transparency allows users to see how 
answers are generated and how processes within 
and among agents have evolved to support answer 
generation. Transparency allows users to access 
lineage information that often appears hidden in 
the complex Semantic Web network. Note that 
explanations should be viewed as a web of inter-
connected objects recording source information, 
source assertions and assumptions, intermediate 
results, and final results instead of as a single 
“flat” annotation. Results from Semantic Web 
applications may be derived from a series of 
information manipulation steps, each of which 

applies a primitive information manipulation 
operation, e.g., an inference or extraction rule, 
on some antecedents and produces a conclusion. 
Note that an information manipulation step may 
be any kind of inference and is not limited to those 
that are used in sound and complete reasoners. 
Thus this representation can handle statistical 
methods, standard logical inference, or even 
non-logical information transformation methods. 
A justification may be viewed as a transaction 
log of information manipulation steps. When a 
user requests a detailed explanation of what has 
been done or what services have been called, it 
is important to be able to present an explanation 
based on this justification. These transaction logs 
may be quite detailed, so it is also important to be 
able to provide explanations that are abstractions 
of these logs.

Another kind of explanation can be obtained 
from provenance metadata that contains annota-
tions concerning information sources, (e.g., when, 
from where, and by whom the data was obtained). 
Provenance metadata connects statements in a 
knowledge base to the statement sources such 
as web pages and publications, including annota-
tions about data collection or extraction methods. 
Criticality of provenance is evident. Users demand 
detailed provenance metadata before they will 
accept and believe answers (e.g., Cowell, et al, 
2006; Del Rio and Pinheiro da Silva, 2007). In 
some settings such where an initial evaluation of 
usefulness is made, provenance metadata (e.g., 
source, recency, and authoritativeness) is the only 
information that users need. 

Trust in the Semantic Web is another subject 
of growing importance in the explanation context. 
Trust representation, computation, combination, 
presentation, and visualization present issues of 
increasing importance for Semantic Web applica-
tions, particularly in settings that include large 
decentralized communities such as online social 
networks (e.g., McGuinness, et. al, 2006).
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Human or Machine Consumption

Semantic Web applications typically require 
explanation for both human and machine con-
sumption. Software agents require representation 
of justifications, provenance and trust in a stan-
dard format in order to enable interoperability. 
An interoperable justification specification can 
be used to generate explanations of an agent’s 
reasoning process as well as of the sources used 
by the agent during the problem solving process. 
Explanations aimed at either humans or software 
agents can be generated from the internal justi-
fication, provenance, and trust representations. 
When the explanations are aimed at humans, the 
explanations must also include human computer 
interface (HCI) considerations. For instance, 
the display of an explanation may take into 
consideration the level of expertise of the user, 
e.g., expert or non-expert, as well as the context 
of the problem (e.g., Del Rio and Pinheiro da 
Silva, 2007a). HCI researchers have approached 
the explanation problem by proposing intelligent 
question-answering systems (e.g., Maybury, 
2003), intelligent help systems (e.g., Lieberman 
and Kumar, 2005), and adaptive interfaces (e.g., 
Wagner and Lieberman, 2003).

Visualization Capabilities

Explanations can be viewed as Semantic Web 
metadata representing how results were obtained. 
In distributed settings such as the Web, represen-
tation interoperability is paramount. A variety of 
“user friendly” rendering and delivery modes are 
required to present information to different types 
of users in varying contexts. As explanations may 
need to be delivered to users with a variety of 
skill levels, visual representation must be flexible, 
manageable, extensible, and interoperable. Addi-
tionally, corresponding presentation modes need 
to be customizable and context-dependent, and 
need to provide options for abstract summaries, 
detailed views, and interactive follow-up support. 

We consider several possible presentation modes. 
Implemented interfaces for each of these views 
can be seen in McGuinness, et al, 2006.

Global View. The entire process of explana-
tion may be presented via a graphical display of a 
justification graph. The idea is to provide a view 
of the global structure of the reasoning process 
used by a question answering system. Com-
mon issues include how portions of information 
composing the explanation will be presented (for 
example, whether they are displayed in an English 
translation of the justification encoding, or in the 
reasoner’s native language); or whether to restrict 
the depth and width of the explanation graph (e.g., 
with using notions such as lens magnitude and 
width options in the Inference Web browser). A 
useful feature in these kinds of views is to provide 
clickable hot links to enable access to additional 
information. 

Focused View. Merely providing tools for 
browsing an execution trace is not adequate for 
most users. It is necessary to provide tools for 
visualizing the explanations at different levels of 
granularity and focus, for instance, to focus on 
one step of the justification, and to display that 
step using a natural language template style for 
presentation. Further focus on explanations can 
be provided by suggested context-appropriate 
follow up questions. 

Filtered View. Alternative options may also be 
chosen, such as seeing only the assertions (ground 
facts) upon which a given result depended; only 
the sources used for ground assertions; or only 
the assumptions upon which the result depended. 
Another possible view is the collection of sources 
contributing information used to derive the re-
sult. Some users are willing to assume that the 
reasoning is correct, and as long as only reliable 
and recent knowledge sources are used, they 
are willing to believe the result. Initially, these 
users may not want to view all the details of the 
information manipulations (but they do want 
the option of asking follow-up questions when 
necessary).
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Abstraction View. Machine-generated jus-
tifications are typically characterized by their 
complexity and richness of details that may not 
be relevant or interesting to most users. Filtering 
explanation information and providing only one 
type of information (for example, only showing 
the information sources) are some of the strate-
gies used to deal with the large volume of data 
in justifications. These strategies translate the 
detailed explanation into a more abstract and 
understandable one. 

In fact, this diversity of presentation styles is 
critical for broad acceptance of SW results. As 
we have interviewed users both in user studies 
(e.g., Cowell, et al, 2006; Del Rio and Pinheiro da 
Silva, 2007; Glass, et al., 2008) and in ad hoc re-
quirements gathering, it was consistently true that 
broad user communities require focus on different 
types of explanation information and on different 
explanation formats. For any user segment that 
prefers a detailed trace-based view, there is another 
complementary and balancing user segment that 
requires an extensively filtered view. This find-
ing results in the design and development of the 
trace-based browser, the explainer with inference 
step focus, multiple filtered follow-up views, and 
a discourse-style presentation component.

Explanation Issues vs. Semantic 
Web Application Characteristics

Having independently considered facets of both 
complex Semantic Web contexts and requirements 
for successful explanations, we now address 
how these issues relate to each other, providing 
requirements for explaining a broader range of 
SW applications.

Explanation and Collaboration

Trust and reputation are important issues in the 
context of collaborative applications and have been 
studied in the context of traditional wikis like 
Wikipedia (e.g., McGuinness, Zeng et al., 2006). 

The advent of semantic wikis introduces new 
concerns and requirements in terms of explana-
tion. Autonomy among SW agents is continuously 
increasing, and if users are expected to believe 
answers from these applications, SW applications 
must support explanations. This requirement be-
comes even more important when SW applications 
collaborate to generate complex results. 

As personal agents mature and assume more 
autonomous control of their users’ activities, it 
becomes more critical that these agents can explain 
the way they solve problems on behalf of humans. 
The agents must be able to tell the user why they 
are performing actions, what they are doing, and 
they must be able to do so in a trustable manner. 
Justifications and task processing explanations 
are essential to allow personal agents to achieve 
their acceptance goals. In addition, the learning 
skill presented by some personal agents ampli-
fies the need for explanation since it introduces 
a degree of variability resulting from learning 
results. Justifications concerning agent’s internal 
reasoning for learning new knowledge as well 
as explanations concerning usage of knowledge 
sources are examples of what must be explained. 
Distributed reasoning requires explanation capa-
bilities to help users understanding the flow of 
information between the different agents involved 
in a problem solving process. These capabilities 
also allow users to understand the process taken 
by the distributed problem solvers. Additionally, 
provenance explanations are of interest since users 
might want to know information about each one of 
the learners and problem solvers used, as well as 
wanting to know information about each source 
of information that was used. Issues of trust and 
reputation are particularly likely to modify user’s 
trust in agents’ answers. 

Explanation and Autonomy

In applications for which the degree of autonomy 
is low (for instance, a Google-based search query), 
no explicit explanation is provided. One could 
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assume that aspects of explanatory material are 
implicitly embedded in the answers. In such set-
tings, the user needs to have enough information 
to understand the context of the answers (e.g., the 
links selected by the query engine represent an 
information retrieval response to the query, and 
the answers include links to the sites containing 
the information). It is assumed that explaining 
why a search engine has selected a set of links is 
implicitly understood by the user (for instance, the 
search engine considers the provided answers to be 
the best responses, with some suitable definition of 
best which may rely on reverse citations, recency, 
etc.). The existence of a ranking mechanism is 
fundamental for the success of the interaction 
process because query reformulation depends on 
that ability. Understanding the process that led 
the search engine to provide an answer to a query 
facilitates the process of query refinement. 

Even applications with low degrees of au-
tonomy may experience demand from users for 
some forms of explanation. Users may want to 
know how a search engine got its answers, for 
example, if the answers were selected using 
certain purchased keywords or other advertising 
promotions, or if the answers depended on out-
of-date source material. The information needs 
to be presented in an understandable manner, for 
instance, by displaying answers using purchased 
keywords in a different style. 

Justifications become even more important 
in applications with higher degrees of autonomy. 
Autonomous agents can follow complex inference 
process, and justifications are an important tool 
for them to provide understandable information 
to end users. 

Explanations and Ontologies

Ontologies can be used effectively to support 
explanations for a wide array of applications, 
ranging from relatively simple search applica-
tions to complex autonomous problem solving. 
For example, consider a contextual database 

search agent which considers user preferences 
when answering queries. Explanations of why a 
given solution was provided in a given context are 
particularly important when the solution does not 
match the user’s specified preferences. Similarly, 
explanations are important when a particular 
contextual query results in different answers in 
different contexts (for example, when answers are 
dependent on the user’s geographic location). 

Inference Web: 
An Ontology-Enhanced 
Infrastructure Supporting 
Explanations 

We now explore Inference Web in the context of 
addressing the problem of providing explanations 
to justify the results and behaviors of Semantic 
Web services and applications. IW provides tools 
and infrastructure for building, maintaining, 
presenting, exchanging, combining, annotating, 
filtering, comparing, and rendering informa-
tion manipulation traces, i.e., justifications. IW 
services are used by agents to publish justifica-
tions and explanations for their results that can 
be accessible digitally – on the web, on a local 
file system, or distributed across digital stores. 
Justification data and explanations derived from 
justifications are encoded using terms defined 
by the Proof Markup Language (PML) justifica-
tion, provenance, and trust ontologies. The PML 
ontologies are specified in OWL and are easily 
integrated with Semantic Web applications. The 
ontologies include terms such as sources, infer-
ence rules, inference steps, and conclusions as 
explained later. 

PML is an on-going, long-term effort with 
several goals and contributions to explaining 
Semantic Web application results and behaviors. 
Our earlier version of PML focused on explaining 
results generated by hybrid web-based reasoning 
systems, such as the question answering systems 
of DARPA’s High Performance Knowledge Base 
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program and its subsequent Rapid Knowledge 
Formation program. The requirements obtained 
for this initial explanation phase were similar to 
explanation requirements gathered for expert sys-
tems where knowledge bases were generated from 
reliable source information and using trained ex-
perts. Information in these systems was assumed 
to be reliable and recent. Thus, agent users only 
needed explanations about information manipula-
tion steps, i.e. how the results were derived in a 
step by step manner from the original knowledge 
base via inference. In this setting, explanations 
concerning information sources used to derive 
results were not required. 

As automated systems become more hybrid 
and include more diverse components, more 
information sources are used and thus users are 
seldom in a position to assume that all information 
is reliable and current. In addition to information 
manipulation, users may need explanations about 
information provenance. Under certain circum-
stances, such as intelligence settings that moti-
vated DTO’s Novel Intelligence for Massive Data 
program, provenance concerns often dwarfed all 
others when explanations were required (Cowell, 
et. al., 2006). 

As automated systems begin to exploit more 
collaborative settings and input may come from 
many unknown authoring sources, notions of trust 
and reputation may become more critical. Meta 
information may be associated with authoring 
sources such as “I trust Joe’s recommendations” 
or “I trust population data in the CIA World 
Factbook”). In these situations the meta-infor-
mation may be user authored. In other settings, 
trust or reputation information may be calculated 
using techniques such as link analysis or revision 
analysis (Zeng, et.al. 2006).

Our goal is to go beyond explanation for tra-
ditional knowledge-based systems, and instead 
address explanation needs in a wide range of 
situations. We have settings where three different 
aspects of explanation sometimes dominate to 
the point that the other aspects are of secondary 

consideration. We thus took on a rationaliza-
tion and redesign of our original representation 
Interlingua so that it could be modular. We can 
now support applications that only desire to focus 
on provenance (initially or permanently ignor-
ing issues related to information manipulation 
and trust.). While these applications may later 
expand to include those concerns, they need not 
import ontologies with terms defined for those 
situations.

 Using PML

To illustrate how PML supports explanation 
generation, we use a simple wine agent scenario. 
While this example is intentionally oversimplified, 
it does contain the question answering and expla-
nation requirements in much more complicated 
examples. We have implemented a wine agent 
(Hsu, McGuinness, 2003) that suggests descrip-
tions of wines to go with foods. The agent uses 
PML as its explanation interlingua, and a theorem 
prover capable of understanding and reasoning 
with OWL and outputting PML (Fikes, et. al., 
2003)). The agent is capable of making wine rec-
ommendations to coordinate with meal courses 
(such as “Tony’s specialty”). Before customers 
choose to follow the agent’s recommendation, 
they may be interested in knowing a description 
of Tony’s specialty, so that they can evaluate if 
the suggested wine pairing meets their desires. 
In this scenario, they would find that Tony’s 
specialty is a shellfish dish and the wine agent 
suggests some white wines as potential matches. 
The user may want to know how the description of 
the matching wine was produced, and if the wine 
agent used other sources of information, such as 
commercial online wine web sites or hand built 
backend databases.

In some intelligence settings, e.g., (Cowell, et. 
al., 2006, Murdock, et. al., 2006), users often want 
to ask questions about what sources were relied 
on to obtain an answer. In some military settings, 
e.g., (Myers, et. al., 2007), users often want to ask 
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what the system is doing, why it has not completed 
something, and what learned information was 
leveraged to obtain an answer. In other settings, 
such as collaborative social networks, users may 
be interested in either reputation as calculated by 
populations or trust as stated and stored by users, 
e.g., (McGuinness, et. al., 2006b). These setting 
are further elaborated in the following section.

Our PML explanation ontologies include 
primitive concepts and relations for representing 
knowledge provenance. Our original version of 
PML (Pinheiro da Silva et al., 2003) provided a 
single integrated ontology for use in representing 
information manipulation activities, the extended 
version of PML (called PML 2) improves the origi-
nal version by modularizing the ontologies and 
refining and expanding the ontology vocabulary. 
This also broadens the reach covering a wider 
spectrum of applications for the intelligence, 
defense, and scientific communities. The modu-
larization serves to separate descriptive metadata 
from the association metadata to reduce the cost 
of maintaining and using each module. The 
vocabulary expansion refines the definition and 
description structure of existing PML concepts; 
and it also adds several new primitive concepts 
to enrich expressiveness. For example, instead of 
simply serializing a piece of information into a 
text string, PML uses the concept of information 
as the universal reference to any piece of data, and 
enables explicit annotation (for instance, of format, 
language, and character encoding) about the string 
that serializes the piece of information. 

PML provides vocabulary for three types of 
explanation metadata:

•	 The provenance ontology (also known as 
PML-P) focuses on annotating identified-
things (and in particular, sources such as 
organization, person, agent, services) useful 
for providing lineage.

•	 The justification ontology (also known as 
PML-J) focuses on explaining dependencies 

among identified-things including how one 
identified-thing (e.g., information) is derived 
from other identified-things (e.g. informa-
tion, services, agents). 

•	 The trust relation ontology (also known 
as PML-T) focuses on representing and 
explaining belief assertions.

Provenance Ontology

The goal of the provenance ontology (also called 
PML-Pa) is to annotate the provenance of informa-
tion, e.g., which sources were used, who encoded 
the information, etc. The foundational concept in 
PML-P is IdentifiedThing. An instance of Iden-
tifiedThing refers to an entity in the real world, 
and its properties annotate its metadata such as 
name, description, creation date-time, authors, 
and owner. PML-P includes two key subclasses 
of IdentifiedThing motivated by knowledge prov-
enance representational concerns: Information 
and Source. 

The concept Information supports references 
to information at various levels of granularity and 
structure. It can be used to encode, for example, a 
formula in logical languages or a natural language 
text string. PML-P users can simply use the value 
of information’s hasRawString property to store 
and access the content of the referred information 
as a string. They may optionally annotate addi-
tional processing and presentation instructions 
using PML-P properties such as hasLanguage, 
hasFormat, hasReferenceUsage and hasPretty-
NameMappingList. Besides providing representa-
tional primitives for use in encoding information 
content as a string, PML-P also includes primitives 
supporting access to externally referenced content 
via hasUrl, which links to an online document, or 
hasInfoSourceUsage, which records when, where 
and by whom the information was obtained. This 
concept allows users to assign an URI reference 
to information. The example below shows that the 
content of a piece of information (identified by 
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#info1) is encoded in the Knowledge Interchange 
Format (KIF) language and is formatted as a text 
string. The second example below shows that the 
content of information (identified by #info_doc1) 
can be indirectly obtained from the specified URL, 
which also is written in KIF language.

<pmlp:Information rdf:about=”#info1”>
  <pmlp:hasRawString>(type TonysSpe-

cialty SHELLFISH)
 h < / p m l p : h a s R a w S t r i n g >  

    < p m l p : h a s L a n g u a g e  r d f : r e -
source= “ht tp: // in ferenceweb.stan -
ford.edu/registry/LG/KIF.owl#KIF” />  
  <pmlp:hasFormat>text</pmlp:hasFormat>  
</pmlp:Information>

<pmlp:Information rdf:about=”#info_
doc1”>

  <pmlp:hasURL>ht tp: // iw.stanford.
e d u / k s l / r e g i s t r y / s t o r a g e / d o c u -
ments/ tonys_fact.ki f</pmlp:hasURL>  
    < p m l p : h a s L a n g u a g e  r d f : r e -
source= “ht tp: // in ferenceweb.stan -
ford.edu/registry/LG/KIF.owl#KIF” />  

</pmlp:Information>

The concept source refers to an information 
container, and it is often used to refer to all the 
information from the container. A source could be 
a document, an agent, or a web page, and PML-
P provides a simple but extensible taxonomy of 
sources. The Inference Web Registry (McGuin-
ness and Pinheiro da Silva, 2003) provides a public 
repository for registered users to pre-register 
metadata about sources so as to better reuse such 
metadata. Our current approach, however, does 
not demand a centralized or virtual distributed 
registry; rather, it depends on a search component 
that finds online PML data and provides search 
service for users’ inquiry. 

<pmlp:Document rdf:about=”#STE”>
 <pmlp:hasContent rdf:resource=”#info_

doc1”/>
</pmlp:Document>

In particular, PML-P provides options for en-
coding finer grained references to a span of a text 
through its DocumentFragmentByOffset concept. 

Figure 1. Raw text fragment with highlighted segment used by text analytics components and represented 
in PML 2
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This is a sub-class of Source and DocumentFrag-
ment. The example below shows how the offset 
information about #ST can be used to highlight 
the corresponding span of text (see Figure 1). This 
type of encoding was used extensively in our ap-
plications that used text analytic components to 
generate structured text from unstructured input 
as explained below. 

<pmlp:DocumentFragmentByOffset rdf:
about=”#ST”>

 < p m l p : h a s D o c u m e n t  r d f :
resource=”#STE”/>

 <pmlp:hasFromOffset>62</pmlp:has-
FromOffset>

 < p m l p : h a s T o O f f -
s e t > 92  < / p m l p : h a s T o O f f s e t > 
</pmlp:DocumentFragmentByOffset>

As our work evolved, a number of our ap-
plications demanded more focus on provenance. 
We became increasingly aware of the importance 
of capturing information about the dependency 
between information and sources, i.e. when and 
how a piece of information was obtained from a 
source. PML 2 has a more sophisticated notion of 
SourceUsage. The encoding below simply shows 
how PML represents date information identifying 
when a source identified by #ST was used. 

< p m l p : S o u r c e U s a g e  r d f :
about=”#usage1”>

 <pmlp:hasUsageDateTime>2005-10-
17T10:30:00Z</pmlp:hasUsageDateTime>

 <pmlp:hasSource rdf:resource=”#ST”/>
</pmlp:SourceUsage>

Besides the above concepts, PML-P also 
defines concepts such as Language, Inference-
Rule, and PrettyNameMapping, which are used 
to represent metadata for application processing 
or presentation instructions. 

Justification Ontology

The goal of the justification ontology is to provide 
concepts and relations used to encode traces of 
process executions used to derive a conclusion. 
A justification requires concepts for representing 
conclusions, and information manipulation steps 
used to transform/derive conclusions from other 
conclusions, e.g., step antecedents. 

A NodeSet includes structure for representing 
a conclusion and a set of alternative information 
manipulation steps also called InferenceSteps. 
Each InferenceStep associated with a NodeSet pro-
vides an alternative justification for the NodeSet’s 
conclusion. The term NodeSet is chosen because 
it captures the notion that the NodeSet concept 
can be used to encode a set of nodes from one or 
many proof trees deriving the same conclusion. 
The URI of a NodeSet is its unique identifier, and 
every NodeSet has exactly one URI.

The term inference in InferenceStep refers to 
a generalized information manipulation step, so it 
could be a standard logical step of inference, an 
information extraction step, a simple computation 
process step, or an assertion of a fact or assump-
tion. It could also be a complex process such as 
a web service or application functionality that 
may not necessarily be describable in terms of 
more atomic processes. InferenceStep properties 
include hasInferenceEngine (the agent who ran 
this step), hasInferenceRule (the operation taken 
in this step), hasSourceUsage, hasAntecedentList 
(the input of this step), and others.

PML2 supports encodings for several typical 
types of justifications for a conclusion. Three 
justification examples are as follows:

An unproved conclusion or goal. A NodeSet 
without any InferenceStep can be explained as an 
inference goal that still needs to be proved. Un-
proved conclusions happen when input informa-
tion encoded in PML2 is provided to an agent.
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<pmlj:NodeSet rdf:about=”#answer1”> 
 <pmlp:hasConclusion rdf:resource = “#info1” /> 
 </pmlp:hasConclusion> 

</pmlj:NodeSet>

Assumption. The conclusion was directly as-
serted by an agent as an assumption. In this case, 
the conclusion is asserted by a source instead of 
being derived from antecedent information.

Direct assertion. The conclusion can be di-
rectly asserted by the inference engine. In this 
case, the conclusion is not derived from any 
antecedent information. Moreover, direct asser-
tion allows agents to specify source usage. The 
following example shows that “‘(type TonysSpe-

cialty SHELLFISH)’ has been directly asserted 
in Stanford’s Tony’s Specialty Example as a span 
of text between byte offset 62 and byte offset 92 
as of 10:30 on 2005-10-17”

<pmlj:NodeSet rdf:about=”#answer2”> 
 <pmlp:hasConclusion rdf:resource=”#info1” 
/>

 <pmlp:isConsequentOf>
 <pmlp:InferenceStep rdf:about=”step2”>
 <pmlp:hasInferenceEngine rdf:resource= 

“http://inferenceweb.stanford.edu/registry/IE/
JTP.owl#JTP” /> 

 <pmlp:hasInferenceRule rdf:resource= 
“http://inferenceweb.stanford.edu/registry/

Figure 2. Trace-oriented explanation with several follow-up question panes
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DPR/Told.owl#Told” /> 
 < p m l p :h a s S o u r c e U s a g e  r d f :

resource=”#usage1” />
 </pmlp:InferenceStep>
 </pmlp:isConsequentOf>
</pmlj:NodeSet>

Tools for Manipulating 
Explanation in PML

To address the need to support multiple visual-
ization modes for explanation, Inference Web 
provides rich presentation options for browsing 
justification traces, including a directed acyclic 
graph (DAG) view that shows the global justi-
fication structure, a collection of hyperlinked 
web pages that allows step-by-step navigation, 
a filtered view that displays only certain parts 
of the trace, an abstracted view, and a discourse 

view (in either list form or dialogue form) that 
answers follow-up questions.

Global View. Figure 2 depicts a screen shot 
from the IW browser in which the Dag proof style 
has been selected to show the global structure 
of the reasoning process. The sentence format 
can be displayed in (limited) English or in the 
reasoner’s native language, and the depth and 
width of the tree can be restricted using the lens 
magnitude and lens width options, respectively. 
The user may ask for additional information by 
clicking hot links. The three small panes show the 
results of asking for follow-up information about 
an inference rule, an inference engine, and the 
variable bindings for a rule application. 

Focused View. In Figure 3a, our explainer 
interface includes an option to focus on one step of 
the trace and display it using an English template 
style for presentation. The follow-up action pull 
down menu then helps the user to ask a number 

Figure 3. (a) step-by-step view focusing on one step using an English template, and list of follow-up 
actions; (b) filtered view displaying supporting assertions and sources
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of context-dependent follow-up questions. 
Filtered View. Figure 3b is the result of the 

user asking to see the sources. 
Abstraction View. Inference Web approaches 

this issue with two strategies:

•	 Filter explanation information and only 
provide one type of information (such as 
what sources were used). This strategy just 
hides portions of the explanation and keeps 
the trace intact. 

•	 Transform the explanation into another 
form. The IW abstractor component helps 
users to generate matching patterns to be 
used to rewrite proof segments producing 
an abstraction. Using these patterns, IW 
may provide an initial abstracted view of 
an explanation and then provide context 
appropriate follow-up question support. 

The IW abstractor consists of an editor that 
allows users to define patterns that are to be 
matched against PML proofs. A matching pattern 
is associated with a rewriting strategy so that 
when a pattern is matched, the abstractor may 
use the rewriting strategy to transform the proof 
(hopefully into something more understandable). 
An example of how a proof can be abstracted 
with the use of a generic abstraction pattern is 
shown in Figure 4. In this case, the reasoner 
used a number of steps to derive that crab was a 
subclass of seafood. This portion of the proof is 
displayed in the Dag style in the middle of Figure 
4 (inside the blue round-angled box). The user 
may specify an abstraction rule to reduce the 
multi-step proof fragment into a one-step proof 
fragment (class-transitivity inference) on the left 
side of Figure 4.

 We are building up abstraction patterns for 
domain independent use, e.g. class transitivity as 

Figure 4. Example of an abstraction of a piece of a proof
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well as for domain-dependent use. It is an ongoing 
line of research to consider how best to build up 
a library of abstraction patterns and how to apply 
them in an efficient manner.

Discourse View. For some types of informa-
tion manipulation traces, particular aspects or 
portions of the trace are predictably more relevant 
to users than others. Additionally, the context 
and user model can often be used to select and 
combine these portions of the trace, along with 
suggestions of which aspects may be important 
for follow-up queries. Particularly for these types 
of traces, IW provides a discourse view, which 
selects trace portions and presents them in simple 
natural language sentences. In this interaction 
mode, the full details of the inference rules and 
node structure are kept hidden from the user. 
Individual nodes, provenance information, and 
metadata associated with those nodes, are used 
as input for various explanation strategies, which 
select just the information relevant to the user’s 
request and provide context-sensitive templates 
for displaying that information in dialogue form. 
This same information is also used to generate 
suggested follow-up queries for the user, including 
requests for additional detail, clarifying questions 
about the explanation that has been provided, and 
questions essentially requesting that an alternate 
explanation strategy be used.

Case Studies: PML in Action 

We will describe four applications that are us-
ing the IW framework and PML for explaining 
semantic information and behavior. We selected 
four applications that can be categorized differ-
ently following the conceptual framework. 

Cognitive Personal Assistants: 
CALO Example

IW and PML have been used by a DARPA-
sponsored cognitive agent system called CALO 

that can be told what to do, reason with available 
knowledge, learn from experience, explain its rec-
ommendations, and respond robustly to surprise. 
The cognitive agent’s actions are supported by 
justifications that are used to derive and present 
understandable explanations to end-users. These 
justifications reflect both how the actions support 
various user goals, and how the particular actions 
chosen by the agent were guided by the state of 
the world. More specifically, our approach to PML 
task justification breaks down the justification 
of a question about a particular task T into three 
complementary strategies, described here using 
terminology from SPARK (Morley & Myers 
2004), the task engine used by CALO: 

•	 Relevance: Demonstrate that fulfilling T 
will further one of the agent’s high-level 
goals, which the user already knows about 
and accepts

•	 Applicability: Demonstrate that the condi-
tions necessary to start T were met at the time 
T started (possibly including the conditions 
that led T to be preferred over alternative 
tasks)

•	 Termination: Demonstrate whether one or 
more of the conditions necessary to termi-
nate T has not been met.

This three-strategy approach contrasts with 
previous approaches to explanation, most of which 
dealt with explaining inference (Scott et al. 1984, 
Wick & Thompson 1992). Previous approaches 
generally have not dealt with termination issues, 
and they also generally have not distinguished 
between relevance and applicability conditions. 
These are critical aspects of task processing and 
thus are important new issues for explanation. 

Behavior Justification in PML

In CALO context, PML documents contain encod-
ings of behavior justifications using PML node 
sets. A task execution justification is always a 
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justification of why an agent is executing a given 
task T. The final conclusion of the justification is 
a sentence in first order logic saying that T is cur-
rently being executed. There are three antecedents 
for this final conclusion, corresponding to the 
three strategies discussed above. Each antecedent 
is supported by a justification fragment based on 
additional introspective predicates. 

It is important to note that all the task process-
ing justifications share a common structure that 
is rich enough to encode provenance information 
needed to answer the explanation requests we have 
identified so far. By inspecting the execution state 
via introspective predicates, explanation compo-
nents can gather enough provenance information 
to support a wide range of explanations. 

Text Analytic Information 
Manipulations: KANI Example

KANI (Knowledge Associates for Novel Intelli-
gence) (Welty, et. al., 2005, Murdock, et. al., 2006) 
is a DTO-sponsored intelligence analyst hybrid 
system that combines large scale information 
extraction with knowledge representation. In this 
section we focus on the relevance of provenance to 
support explanations of hybrid systems utilizing 
statistical and deductive inference.

In this setting, we can view all information 
manipulation steps in a PML justification as a 
kind of inference. We then generated a taxonomy 
of text analytic processes and tasks that can be 
viewed as inferences. The taxonomy was mo-
tivated by the need to describe and explain the 
dominant extraction tasks in UIMAb, without 
overloading the system with more information 
than would be useful. One key was to generate a 
taxonomy that is adequate to accurately describe 
extraction task functionalities and simultaneously 
abstract enough to be able to hide details of the 
tasks from end users. Another key was to support 
explanations to end users of the integrated system, 
not authors of software components debugging 
their products.

We divided text extraction into three primitive 
areas: annotation, co-reference, and integration. 
We describe each briefly. Annotation tasks make 
assertions about spans of text that recognize a type 
or argument. Annotation inferences include:

1.	 Entity recognition: Determines that some 
span of text refers to an entity of a specified 
type. For example, a component could take 
the sentence “Tony Gradgrind is the owner of 
Tony’s Foods” (the restaurant serving Tony’s 
Specialty) and conclude that characters 0 to 
14 of that sentence refer to some entity of 
type Person.

2.	 Relation recognition: Assigns a relation 
type to a span (e.g., a sentence describes a 
relation of type Owner). 

3.	 Relation annotation argument identifica-
tion: Determines and assigns values to the 
roles of a relation (e.g., a particular person 
is a participant in a given ownership relation 
instance).

Co-reference inferences utilize annotation 
inferences and further identify that multiple 
text spans actually refer to the same entity or 
relation.

1.	 Entity identification: Determines that a 
set of entity annotations refer to a particular 
instance.

2.	 Relation identification: Determines that a 
set of relation annotations refer to a particular 
relation instance.

3.	 Extracted entity classification: Determines 
that a particular co-referenced entity has a 
particular type. (e.g., the type of the entity 
referred to by “Gradgrind” is Person).

4.	 Knowledge integration inferences include 
mapping inferences providing access to 
provenance.

5.	 Entity mapping: Determines that an entity 
instance in the KB is derived from a set of 
entities and relation instances. 
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6.	 Relation mapping: Determines that a re-
lationship in the target KB is derived from 
a set of entity and relation instances.

7.	 Target entity classification: Determines 
that an entity instance is an instance of an 
entity type in the target ontology.

We have registered these inferences in the IW 
registry and we use these information manipula-
tion steps to explain all of the UIMA components 
used in our prototype system, which provides intel-
ligence analyst support for analyzing documents 
and evaluating results of text statements. 

Text Analytic Manipulation Descriptions

We use our taxonomy of text analytic manipula-
tions in declarative descriptions encoding what 
was done to generate the extracted knowledge bas-
es. UIMA generates a large extracted knowledge 
database containing its conclusions. We needed 
to take that as input (potentially augmented) and 
generate interoperable proof descriptions (a PML 
document) as an output. 

The software component that produces PML 
documents for UIMA-based analysis processes 
begins with a specified result from a specified 
Extended Knowledge Database (EKDB) (e.g., 
TonyGradgrind is the Owner of TonysFoods). It 
follows the links in the EKDB from that conclu-
sion back to the intermediate results and raw input 
that led to it. From these intermediate results, 
it is able to produce inference steps encoded in 
PML that refer to the corresponding tasks in the 
taxonomy. For example, if the EKDB records that 
characters 0 to 14 of some sentence were labeled 
as a Person and that this labeling was identified as 
specifying an occurrence of TonyGradgrind then 
the component would create an Entity Recognition 
inference step in PML for that labeling as well as 
coreference step for the result that the labeling is 
an occurrence of TonyGradgrind.

Transparent Accountable Data 
Mining: TAMI Example

TAMI (Weitzner, et. al., 2006) is an NSF-spon-
sored privacy-preserving system funded in the 
Cybertrust program. The idea is to provide 
transparency into the usage of data that has been 
collected, so that people may be able to see how 
data that has been collected about them has been 
used. In any accountable system, explanations are 
essential for providing transparency into the usage 
of information along with claims of compliance 
with privacy policies.

Usage policies are encoded concerning which 
organizations can use information for particular 
purposes. (The project specifically aims at us-
age instead of collection policies, so it is only 
use and reuse that is a topic for explanations). 
A transaction log is collected, which encodes 
data transfer information concerning transfers, 
policies, purposes, and organizations. Reason-
ing engines are used that evaluate the validity of 
transfer actions based on the encoded policies. 
These engines are instrumented to encode justi-
fications for their determinations in PML, so that 
explanations can be provided about justified or 
unjustified transfers. 

This system can be leveraged in a number of 
examples. One use case is in the explanation of 
justified or unjustified arrests. It is possible that 
data collected in compliance with rules for a 
particular purpose by an authorized agency may 
be reused to support a number of other conclu-
sions. One prototype demonstration system in 
TAMI looks at arrests and then checks to see if 
they are justified according to their appropriate 
or inappropriate reuse of data that has been col-
lected. Inference Web can then be used to explain 
why the system has determined that an arrest is 
legally justified or unjustified.



 19

Explaining Semantic Web Applications

Integrated Learning Systems: 
GILA Example

 
GILA (Generalized Integrated Learning Archi-
tecture) is a DARPA-sponsored intelligent agent 
that integrates the results of multiple learners to 
provide intelligent assistant services. The initial 
domain is airspace control order deconfliction. 
GILA uses multiple independent learning com-
ponents, a meta reasoning executive, and other 
components to make recommendations about 
ways to resolve conflicts in an existing airspace 
control order. In order to be operational, it must 
be able to explain its recommendations to end 
users and auditors. In addition, the explanations 
may be uses by learners and the meta executive to 
choose appropriate recommendations and assign 
credit and blame. 

Discussion
 

Explanation has been an active line of research 
since at least the days of expert systems, where 
explanation research largely focused on explaining 
rule-based systems. Today, explanation in rule 
systems is once again a research. Rule systems 
are now being integrated into hybrid settings, 
and now explanation must be done on both the 
rule components and the setting in which conclu-
sions from those rule components are integrated 
and used. Also, theorem proving systems, such 
as Description Logic Reasoners, historically 
integrated explanation capabilities after usage 
increased and broadened. Early description log-
ics that were broadly used, such as CLASSIC 
and LOOM provided some notion of explanation 
(e.g., McGuinness, 1996) in either insight into 
a trace or a proof theoretic-based approach to 
explanation. More recent explanation demands 
have inspired current generation tableaux-based 
DL reasoners to include some notion of explana-
tion focusing on provenance, axiom usage, and 
clash detection (e.g., Parsia, et al, 2005, Plessers 

and Troyer, 2006). While all of these efforts 
are useful and important, today’s explanation 
systems need to handle a much broader range of 
question answering styles and thus demand much 
more versatility and interoperability for their 
explanation infrastructure. Simultaneously, the 
infrastructure needs to be modular so that users 
with limited scope can support their applications 
without the burden of extra (unwanted) overhead. 
In our research on explaining provenance, we have 
recently modularized our explanation interlingua 
and the supporting background ontologies so that 
clients only interested in explaining provenance 
may use our infrastructure with the freedom of 
importing only the required modules.

Explanation requirements often arise in many 
settings that do not simply use standard deductive 
reasoning components. Our work, for example, has 
taken us into the realm of explaining text analytic 
components and a wide range of machine learning 
components. As a result, we have explored and 
are continuing to explore representation, manipu-
lation, and presentation support for explaining 
systems that may use statistical, incomplete, 
and/or uncertain reasoning paradigms. Explana-
tion research has also branched out into settings 
such as collaborative social networks, and we 
have engaged in research aimed particularly at 
explaining systems embedded in or leveraging 
large distributed communities. In many of the 
more recent research areas, we have found many 
requirements concerning trust, ranging from 
trust calculation to trust propagation, as well as 
presentation issues related to filtering by trust. 

One relatively active area of provenance ex-
planation is in the field of scientific applications. 
Increasingly, virtual collections of scientific data 
are being enabled by semantic technology (e.g., 
Virtual Observatories such as the Virtual Solar 
Terrestrial Observatory (McGuinness, et al, 
2007). Such repositories are much more likely 
to be usable and to be used when provenance is 
maintained and available concerning where the 
data came from. More recently, there has been 
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emphasis on additionally explaining the work-
flow from which it was produced. Thus, there is 
an emerging emphasis on explaining scientific 
provenance and workflow.

Future Research Directions

We have active research plans in a number of 
areas related to explanation. 

1.	 Learning. Increasingly hybrid systems are 
depending on individual or multiple learning 
components to provide either ground facts 
or sometimes procedures. We are currently 
working multiple learning component au-
thors to provide explanation components 
for learned information and learned proce-
dures.

2.	 Provenance. The importance of provenance 
seems to be growing in many fields and we 
are focusing on providing relatively light-
weight explanation solutions for provenance. 
We are also exploring special purpose needs 
of interdisciplinary scientific applications 
with respect to provenance.

3.	 Trust. Our current trust model is relatively 
simplistic and we are investigating ways 
of providing more representational primi-
tives, methods for automatically suggesting 
trust ratings, and methods for intelligently 
combining and explaining combined trust 
values.

4.	 Evaluation. We have developed a PML 
validator that checks to see if an encoding 
is valid PML. We are extending that to 
provide an ontology evaluation module that 
not only checks for syntactic and semantic 
correctness, but also reviews (and explains 
findings concerning) ontology modeling 
styles.

Conclusion 

In this chapter, we have explored the growing 
field of explanation. We noted that as applications 
become more autonomous, complex, collabora-
tive, and interconnected, the need for explanation 
expands. We presented a modular interlingua 
capable of representing explanations that focus 
on provenance, justifications, and trust. We also 
presented the Inference Web infrastructure for 
manipulating explanations in a wide range of 
application settings. We provided examples in 
a diverse set of domains showing different set-
tings where explanations are required, and then 
described how Inference Web and PML are being 
used to meet these needs. We also presented a 
number of different presentation paradigms for 
explanations. 
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