
Trustable Task Processing Systems

Alyssa Glass, Deborah L. McGuinness, Paulo Pinheiro da Silva, and Michael Wolverton

As personal assistant software matures and assumes more autonomous control of user activities, it becomes more critical that
this software can tell the user why it is doing what it is doing, and instill trust in the user that its task knowledge reflects
standard practice and is being appropriately applied. Our research focuses broadly on providing infrastructure that may be
used to increase trust in intelligent agents. In this paper, we will report on a study we designed to identify factors that
influence trust in intelligent adaptive agents. We will then introduce our work on explaining adaptive task processing agents
as motivated by the results of the trust study. We will introduce our task execution explanation component and provide
examples in the context of a particular adaptive agent named CALO. Key features include (1) an architecture designed for
re-use among different task execution systems; (2) a set of introspective predicates and a software wrapper that extracts
explanation-relevant information from a task execution system; (3) a version of the Inference Web explainer for generating
formal justifications of task processing and converting them to user-friendly explanations; and (4) a unified framework for
explaining results from task execution, learning, and deductive reasoning.

1 Introduction

Personalized software assistants have the potential to support
humans in everyday tasks by providing assistance in cognitive
processing. If these agents are expected to achieve their poten-
tial and perform activities in service of humans (and possibly
other agents) then these agents need to be fully accountable.
Before their users can be expected to rely on cognitive agents,
the agents need to provide justifications for their decisions, in-
cluding that those decisions are based on appropriate processes
and on information that is accurate and current. Further, if the
agents are to be used to perform tasks, they need to explain
how and under what conditions they will execute a task, as well
as how and why that procedure has been created or modified .

One challenge to explaining adaptive assistants is that they,
by necessity, include task processing components that evaluate
and execute tasks, as well as reasoning components that deter-
mine conclusions. A comprehensive explainer needs to explain
task processing responses as well as more traditional reasoning
systems, providing access to both inference and provenance in-
formation, which we refer to as knowledge provenance [1].

Work has been done in the theorem proving community, as
well as in many specialized reasoning communities, to explain
deductions. A limited amount of explanation work has been done
in the task execution community. What has not been done is
work explaining task execution in a way that is also appropriate
for explaining both deductive reasoning and provenance. Our
work provides a uniform approach to representing and explaining
provenance and results from both communities, in addition to
learned information.

We present our work in the setting of the DARPA Personal-
ized Assistant that Learns (PAL) [2] program, as part of the Cog-
nitive Assistant that Learns and Organizes (CALO) [3] project.
The CALO system includes work from 22 different organiza-
tions. This presents a complex challenge where CALO users
must understand and trust conclusions from multiple knowledge
sources, both hand built and automatically generated, with mul-
tiple reasoning techniques including task processing, deduction,

and learning. In this paper, we first describe a study of CALO
users, in which we investigate issues of trust and usability, dis-
cussing several design guidelines implied by the results of this
study. Using these guidelines, we then present our represen-
tation, infrastructure, and solution architecture for explaining
BDI-based task processing and learning in adaptive agents. We
describe how it has been implemented in our new Integrated
Cognitive Explanation Environment (ICEE), and show how it
has been used to provide explanations in CALO.

2 Trust Study

We conducted a structured, qualitative trust study to identify
what factors influence user trust in adaptive agents, to under-
stand the types of questions users would like supported by such a
system, and to evaluate the general usability of adaptive agents.

Procedure Our study was conducted in two basic stages: the
usage stage and the interview stage. For the usage stage, we
piggy-backed on a broad study aimed at testing the learning ca-
pabilities within the CALO system. The broad study is part of a
long term effort involving a large set of testers and researchers,
extensive participant training for the use of various CALO com-
ponents, and detailed analysis of complex data logs and learning
algorithms through intensive system use by dedicated users over
approximately two weeks. During the usage stage, participants
typically used the system for a full eight hour work day, each
day, for the entire duration of the test period.

During the interview stage, we interviewed each participant
after the usage period. The interviews were structured to fol-
low a fixed script for all participants. The script contained 40
questions—eleven questions using a typical 5-step Likert scale
(from “hardly ever” to “extremely often”) and 29 open response
questions. The script was organized around five main topics:
failure, surprise, confusion, question-answering, and trust. Each
interview was audio recorded. We used these recordings to make
notes and to organize the responses into common themes.

Page 1



CALO Agent Overview The CALO system provides capabili-
ties for a wide range of office-related tasks [4], including main-
taining calendars and schedules of meetings, managing contact
information, scanning and sorting email and other documents,
performing Web searches, scraping information from the Web,
helping to prepare new documents and presentations, managing
tasks, purchasing new equipment, planning travel, and learning
new procedures for previously unknown tasks.

Typical tasks the participants performed with the help of
their agents included scheduling mutually convenient meetings
with groups of people; planning detailed travel arrangements to
attend conferences; and teaching their agents how to indepen-
dently find and store contact information for colleagues using
Web searches and scraping. In many cases, participants were
provided with guidance about how best to use CALO to per-
form the tasks. In other cases, participants were free to use any
portion of the CALO system that they felt would best enable
them to accomplish specific goals.

The main objective for the CALO project is to explore the use
of machine learning techniques as applied in robust, complex as-
sistant agents capable of reasoning, execution, explanation, and
self-reflection. Questions of usability, though important when
building a deployed personal assistant, were not central research
questions for the project.

3 Study Findings

After completing the interviews, we grouped similar comments
from multiple users into topics, and discarded topics that only
a few participants commented on. Several themes are discussed
below, focusing on those which impact the use of explanations.
While not all participants commented on all themes, each of
the themes were significant to a majority of the participants.
Further detail can be found in [5].

Theme 1: Granularity of Feedback. In the cases where the
agent provided feedback to the participants, many of them com-
mented that the feedback was at the wrong level of detail for
their needs. Several of the agent components provided simple
status messages indicating simply “Okay” or “Not Okay.” Par-
ticipants found this type of feedback frustrating, because they
desired additional feedback to explore details about the cause of
the problem, and possible solutions. Participants commented,
“[The component] would say ’I’m confused’ and there was no
other feedback,” and “I definitely wanted to know WHY!” Lack-
ing more detailed feedback, they were unable to fix the problem,
nor to avoid it in the future.

Equally frustrating to many participants were other system
components that provided an overwhelming amount of feedback.
The constant stream of status information from these compo-
nents was so frequent and cumbersome that most users found
them to be unhelpful even when there was a problem.

Theme 2: Context-Sensitive Questions. To investigate the
value of different types of explanations to user needs, we asked
our users to rate a list of question types according to how often
they would have utilized questions of that type if an answer to
it had been available during the test.

We used Silveira et al.’s “Taxonomy of Users’ Frequent
Doubts” [6], an enumeration of user information needs, as our
candidate question types, and each was ranked by each user on

a Likert scale from 1 (“would never want to ask”) to 5 (“would
want to ask extremely often”). We averaged the ratings to pro-
duce an overall score of usefulness for each question. These
questions can generally be divided into two categories. Context-
independent questions have answers that are not dependent on
the context in which they are asked; these questions can gener-
ally be addressed by standard help systems or mouse-over pop-
up text boxes. Context-sensitive questions require the system
to consider what is currently happening (“task sensitivity”) or
high-level goals inferred from the user (“user-intent sensitivity”).

Of the question types presented, five of them had average
scores of 3.0 or higher. Of these five question types, three are
context-independent and could be supported in a software sys-
tem through the use of easily-accessed documentation. The
other two top question types, the Interpretive questions (e.g.,
What is happening now? Why did it happen?) and Guidance
questions (e.g., What should I do now?) are context-sensitive,
and point to the need for more complex explanation capabilities
to address these user needs.

In addition to rating the standard taxonomy of questions, we
also asked our users to identify on their own the questions they
most wanted to ask.1 The most common questions our users
requested were:

1. What are you doing right now?
2. Why did you do that?
3. When will you be finished?
4. What information sources did you use?

Of the 34 questions mentioned by our participants, 16 of them
(47%) were variations on these four questions.

We also note two final observations about the explanation
requirements identified by the participants. First, we note that
the questions most often identified by the participants before be-
ing presented with the taxonomy of question types are entirely
context-sensitive. We conclude that the majority of the confu-
sion encountered by the participants cannot be solved with the
use of simple help systems or documentation, but rather requires
a deeper solution. Second, we were surprised by the reaction of
our participants when presented with the question types from
the taxonomy. Common reactions included comments like “I
would love to ask that!”, “That’s a cool [question]... I’d use
that if it existed!”, and “I was asking that [to myself] all day!”
The majority of our participants expressed that these were ques-
tions that they would definitely want to ask, but it would not
generally occur to them to ask the questions because they do
not expect systems to be able to provide useful answers.

Theme 3: Being Ignored. Many participants complained
about feeling ignored by the agent. After providing the sys-
tem with personal preferences, as well as suggestions and feed-
back aimed at improving machine learning, many users were left
with the impression that their effort was wasted and that the
agent was ignoring them. Users complained that the agent was
“not paying attention” during interactions. One user said, “You
specify something, and [the system] comes up with something
completely different, and you’re like, it’s ignoring what I want!”

Theme 4: Transparency. When asked what would help
them to build trust in the system, the first thing most partici-
pants (71%) mentioned was transparency, and every participant

1In the study, users provided their free-form questions before being
presented with the taxonomy.

Page 2



(100%) mentioned transparency as a major factor affecting over-
all usability. Participants complained that the system was “too
opaque” and “needs to be more comprehensible.” Several users
noted that the components of the system that they trusted the
most were the ones that provided feedback about what they
were doing. One user commented that “the ability to check up
on the system, ask it questions, get transparency to verify what
it is doing, is the number one thing that would make me want
to use it.” We note as well that transparency is particularly
useful in building trust in a system for which a baseline of trust
does not already exist through reputation-based methods (for
example, through recommendations from other users).

Theme 5: Provenance. Access to knowledge provenance
was also mentioned by many participants. Several users reported
that explanations of knowledge provenance would enable them
to trust results without the need for extensive further verifica-
tion. One user commented that, “in general, I wanted informa-
tion about the source,” and another user said that “[the system]
needs a better way to have a meta-conversation.”

We also found, somewhat surprisingly, that providing access
to knowledge provenance would increase trust not only in the
answers provided by the system, but also in the reasoning of the
entire system itself. Users tended not to blame incorrect answers
on errors in the data, or even a lack of sufficient data, as was
often the case with statistical machine learning components in
the system. These “data-driven” errors, however, are often easy
to fix, and when errors could be properly identified as being data-
driven rather than logic-driven, the users’ trust in the system as
a whole was better maintained.

Theme 6: Autonomy and Verification. Most participants
adopted a “trust but verify” approach. When asked how of-
ten they felt that they trusted the system, most participants
responded that they trusted the system 25 to 60 percent of the
time. Upon further investigation, it became clear that almost
all participants actually meant that they would trust the sys-
tem this often, but only if they were given mechanisms to verify
the responses and override erroneous behavior when necessary.
Typical participants said that they trusted the system when it
“wasn’t too autonomous,” when the system performed “with
supervision,” and when they could “check up on” the system.
Participants noted that “trust is an earned property” that the
system would only earn when its behavior has been verified.

Guidelines for Adaptive Agents Our research and implemen-
tations address issues of user trust in complex adaptive agents.
We observe that an explanation system that provides context-
sensitive explanations of adaptive agents (for instance, as in
[7]) is capable of addressing the themes described above. Our
findings show that users have specific requirements in terms of
transparency and verification that they expect from such systems
before they are willing to trust the outputs and actions of the
system. In addition, as these systems become more intelligent,
they must increasingly support the ability to have a “dialogue”
or “conversation” with users, to provide them with reassurances
about the system’s understanding of the user and the world.

Several theoretical frameworks for modeling these dialogues
have been suggested; Walton [8] compares several of these mod-
els and suggests one such model that is particularly useful for
modeling explanation dialogues of the type that would address
the themes we identified here. In the HCI community, some

Figure 1: ICEE architecture. Shaded boxes show how additional
explanation capabilities (beyond explaining task reasoning) are
integrated into the overall framework; these additional compo-
nents are not discussed in this paper.

previous work (for example, [9]) has taken a high-level view of
making an intelligent system usable. The themes that we present
here build on these broad guidelines, providing more grounded,
concrete guidance for designing interfaces for adaptive agents.

4 The ICEE System

We used these guidelines to inform our explanation design and
implementation. ICEE focuses on providing explanations of task
processing and learning in hybrid adaptive agents and is inte-
grated with the CALO system.

4.1 Architecture Overview

The architecture of ICEE, shown in Figure 1, is designed to be
flexible and allow explanations to be derived from justifications
gathered seamlessly from a variety of task processing and knowl-
edge systems. An explanation dispatcher gathers structured ex-
planation requests from the user through a collaboration agent
or user interface. The assistant’s user interface provides special-
ized mechanisms for users to request explanations.

Based on the type of the explanation request, the explana-
tion dispatcher determines which explainer will handle the re-
quest, and forwards it to the proper explainer component. For
questions related to task processing, the Task Manager (TM)
explainer handles the request. The TM explainer instructs the
TM wrapper to gather task processing information about the
requested tasks. The TM wrapper is closely coupled with a BDI
execution system, or task manager. We have provided a TM
wrapper for the task execution system used in CALO, which is
based on the SRI Procedural Agent Realization Kit (SPARK);
however, any similar task execution system could be similarly
enhanced with explanation capabilities.

The TM wrapper stores the gathered task processing infor-
mation in the task state database. This database is then used by
the justification generator to create a justification for the tasks
currently under execution, including any additional processing
that is related to the current tasks. The justification can then
be used by the TM strategies to create alternative explanations
and select the one most salient to the user’s questions. The
explanation dispatcher returns the selected explanation to the
collaboration agent for appropriate display to the user. Each of
these architectural components is discussed below.

Page 3



4.2 Task Oriented Processing

Complex cognitive agents must have a mechanism for represent-
ing and executing tasks. A belief-desire-intention (BDI) model
[10] is a common framework for task reasoning components.
BDI systems cover a range of execution capabilities, including
hierarchical task encoding, control of procedural agent behavior,
sequential and parallel execution of sub-procedures, conditional
execution, branching, flexible preconditions, and meta-level rea-
soning to determine applicable procedures.

Task management in CALO is provided by SPARK [11], a
BDI agent framework, which maintains procedures that define
agent actions. The CALO Task knowledge base includes human-
authored procedures along with procedures that were learned
based on evolving information. ICEE gathers information on
both static aspects of procedures within SPARK as well as dy-
namic information about its past and current execution state.

4.3 Introspective Predicates

ICEE is designed to provide cognitive agent users with the abil-
ity to ask detailed questions about task execution and to engage
in a dialogue about past, current, and future task execution, as
well as task procedure provenance information. To provide ex-
planations of task processing system behavior, justifications are
annotated with meta-data. In order to generate detailed expla-
nations, the task execution system must be able to expose this
meta-information. One of our contributions is a specification of
a set of introspective predicates that were designed to provide
access to meta-information required for explainable task proces-
sors. These introspective predicates fall into three categories:

1. Basic Procedure Information: relatively stable, static in-
formation that is not dependant on when a task is exe-
cuted. Provenance information about how task definitions
have been created or learned is a key aspect of these in-
trospective predicates.

2. Execution Information: dynamic information that is gen-
erated as a task begins being executed, and remains valid
in some form throughout the execution of that task. This
information also includes history related to completed tasks.

3. Projection Information: information about future execu-
tion, as well as alternatives for decision points that have
already passed.

A task execution system that provides access to these intro-
spective predicates can be linked to ICEE and allow it to fully
explain all the question types and strategies described above.
Details on the introspective predicates can be found in [12].

4.4 Wrapper, Action Schema and Action
Database

To collect explanation-relevant information from the task ex-
ecution agent and store it in a format understandable by the
explainer, we designed and built a wrapper for SPARK and an
intermediate action schema in which to record task information.
These elements were designed to achieve three criteria:

• Salience. The wrapper should obtain information about
an agent’s processing that is likely to address some pos-
sible user information needs.

Figure 2: Part of the schema representing execution information.

• Reusability. The wrapper should obtain information that
is also useful in other cognitive agent activities that re-
quire reasoning about action - for example, state estima-
tion and procedure learning.

• Generality. The schema should represent action informa-
tion in as general a way as possible, covering the action
reasoning of blackboard systems, production systems, and
other agent architectures.

The wrapper collects a snapshot of SPARK’s current state
as well as the decisions that led to that state. It uses SPARK’s
expanded introspective predicates to extract the portions of its
intention structure relevant to its current intentions, recursively
querying for the supporting elements of intentions and proce-
dures. Example queries include: What are the current inten-
tions? What is the procedure instance that led to intention X?
What preconditions were met before executing procedure P?

After collecting the snapshot, the wrapper stores it in a
SPARK-independent task execution action database. A portion
of the representation schema we use is shown in Figure 2. The
schema reflects that most task execution systems share the same
common structure. While the terminology in our schema is con-
sistent with SPARK’s, the concepts are general and consistent
with other cognitive architectures. For example, “procedures” in
our schema are equivalent to “knowledge sources” in BB* and
other blackboard architectures, “procedure instances” are equiv-
alent to “Knowledge Source Activation Records (KSARs)”, etc.
[13]. The database records the relationships between entities rel-
evant to the agent’s current state, for example, which intentions
were established by which procedure instances, which procedure
a given instance instantiates, and which of a procedure’s termi-
nation conditions were satisfied and which were not.

We achieve multiple design goals by creating a system-specific
wrapper and a generic action schema. When new task execution
systems (other than SPARK) need to be explained, the generic
action schema is reused and only a new wrapper is needed. No
changes are required to the justification representation or the
explanation strategies. Also, the action schema can be reused
by other cognitive agent components for purposes beyond ex-
planation, such as state capture, archiving, or snapshotting.

4.5 Generating Formal Justifications

A cognitive agent’s actions should be supported by justifications
that are used to derive and present understandable explanations

Page 4



to end-users. These justifications need to reflect both how the
actions support user goals, and how the actions chosen by the
agent were guided by the state of the world. More specifically,
our approach to task justification breaks down the justification
of a question about a particular task T into three complementary
strategies, described here using terminology from SPARK:

• Relevance: Demonstrate that fulfilling T will further one
of the agent’s high-level goals, which the user already
knows about and accepts

• Applicability: Demonstrate that the conditions necessary
to start T were met when T started (possibly including
the conditions that led T to be preferred over alternatives)

• Termination: Demonstrate whether one or more of the
conditions necessary to terminate T has not been met.

This three-strategy approach contrasts with previous approaches,
most of which dealt with explaining inference [14, 15]. Previous
approaches generally have not dealt with termination issues, and
have not generally distinguished between relevance and applica-
bility conditions. These are critical aspects of task processing
and thus are important new issues for explanation.

Justifications can be seen and represented as proofs of how
information was manipulated to come to a particular conclu-
sion. We chose to leverage the Inference Web infrastructure
[16] for providing explanations. Inference Web was designed to
provide a set of components for representing, generating, ma-
nipulating, summarizing, searching, and presenting explanations
for answers from question answering agents. At Inference Web’s
core is an Interlingua for representing provenance, justification,
and trust encodings called the Proof Markup Language (PML)
[17]. PML provides core representational constructs for prove-
nance, information manipulation steps, and trust. Inference Web
also provides PML tools for interactive browsing, summarization,
validating, and searching [18]. In this work, we expanded the
inference web infrastructure and underlying components to pro-
vide support for explaining task execution systems and learning.

PML documents contain encodings of behavior justifications
using PML node sets. An OWL [19] specification of all PML
terms is available, which separates out provenance2, justifica-
tions3, and trust4. PML node sets are the main components of
OWL documents describing justifications for application answers
published on the Web. Each node set represents a step in a proof
whose conclusion is justified by any of a set of inference steps as-
sociated with a node set. A task execution justification is always
a justification of why an agent is executing a given task T . The
final conclusion of the justification is a FOL sentence saying that
T is currently being executed. There are three antecedents for
this final conclusion, corresponding to the three strategies dis-
cussed above. Each antecedent is supported by a justification
fragment based on additional introspective predicates.

It is important to note that all the task processing justifica-
tions share a common structure that is rich enough to encode
the provenance information needed to answer the explanation re-
quests identified in the user study. By inspecting the execution
state, explanation components can gather enough provenance
information to support a wide range of explanations.

2http://inference-web.org/2006/06/pml-provenance.owl
3http://inference-web.org/2006/06/pml-justification.owl
4http://inference-web.org/2006/06/pml-trust.owl

Figure 3: An example explanation, with follow-up questions.

4.6 Producing Explanations

Different users may need different types of explanations. In order
to personalize explanations, ICEE uses explanation strategies.
An explanation strategy provides a method for retrieving prove-
nance and inference information from justifications, selecting the
information relevant to the request, and presenting the informa-
tion to the user. The feedback from our user study motivated
our choice of supported explanation and follow-up strategies.

User modeling and strategy selection are handled by the ex-
planation dispatcher. Currently, user modeling is restricted to
user preferences. Additional approaches based on user interac-
tion and machine learning techniques are under investigation.
The explanation strategies are closely tied to the explanation re-
quest types discussed above. Example strategies include reveal-
ing task hierarchy, exposing preconditions or termination con-
ditions, revealing meta-information about task dependencies, or
explaining provenance information related to task preconditions,
task learning, or other task knowledge.

Each individual user may also desire different explanations in
different situations. ICEE provides context-dependent follow-up
questions for the user. Follow-up questions might include re-
quests for additional detail, clarifying questions about the expla-
nation that has been provided, or questions essentially requesting
that an alternate strategy be used to answer the original ques-
tion. The user’s familiarity with the particular task, current level
of confusion, cognitive load, or other factors may influence which
follow-up question(s) they choose in different contexts. Figure
3 shows an example user interface linked to ICEE. The user has
requested an explanation of the motivation for a subtask of an
executing task, and an explanation is provided along with three
suggested follow-up questions.

5 Related Work and Discussion

Though there is increasing interest in building adaptive systems,
and much has been written about the components that com-
prise these systems, little work has been done to evaluate their
user acceptance. Cortellessa & Cesta [20] discuss this lack of re-
search on what they call the “quality of interaction,” and provide
results of an initial study focused on user trust and the use of
explanation in mixed-initiative planning systems. In this partic-
ular domain, they found that the use of explanations was highly
correlated with the number of failures experienced by users.

Bunt et al. [21] provides for, but does not evaluate, a mecha-

Page 5



nism for simple explanations aimed at maintaining transparency.
Our study extends that work to understand how such an expla-
nation mechanism can influence user trust in a broader range
of adaptive systems. Additionally, user studies focused solely on
understanding machine learning [22, 23] have looked at how ex-
planations can increase acceptance and usability of these learn-
ing algorithms in isolation, by testing user understanding of a
variety of learning algorithms when explanations are available.

There has been an abundance of work in explaining expert
systems and, to a lesser extent, explaining automated reasoning
systems. Most of these have focused on some notion of ex-
plaining the deductive trace of declarative rules. Previous work
on Inference Web and related work explaining hybrid reasoners
added to the field by focusing on settings that are web-based
or distributed. Our current work further expands the coverage
to support explanations of task executions in the presence of
learned knowledge, declarative rule processing, and provenance.

The literature on automated explanation research that ex-
plicitly addresses explaining actions is sparse. [24] presents a
module to explain a Soar agent’s actions by reconstructing the
context in which action decisions were made, and then tweaking
that context (hypothetically) to discover the elements that were
critical to the decision. While Johnson’s approach does have
some similarities with the way we handle gating conditions, it
does not deal with relevance and termination strategies that
are important to our agent explanation module. Earlier, Schul-
man & Hayes-Roth [25] developed a BB1 module that explains
actions using the architecture’s control plan, but it does not ad-
dress explaining when the control plan does not exist, as is the
case in CALO and most other intelligent architectures. Work
on plan description [26, 27, 28] has focused on summarizing an
agent’s aggregate behavior, rather than justifying individual task
choices. Our work thus fills an important gap in explaining agent
actions, providing fine-grained explanations of a wide range of
agent activities, taking into account more aspects of BDI agent
architectures, while using an approach that is compatible with
explaining hybrid reasoning components, such as standard FOL
reasoners. One promising area of future work would be to al-
low the user to switch between coarse-grained and fine-grained
explanations, combining our work with the previous approach.

Driven by the needs of explaining cognitive assistants, we
have focused on explanation infrastructures that can work with
task execution systems as well as with deductive reasoners and
learning components. We have described current progress on de-
signing and implementing an extensible and flexible architecture
that is capable of explaining the breadth required by cognitive
assistants, with requirements gathered through a study of trust
in one sample adaptive agent. Our architecture and implemen-
tation demonstrates that an explanation mechanism initially de-
signed for explaining deductive reasoning can also be successfully
applied to explaining task-oriented reasoning. Additionally, work
devoted simply to explaining task execution has not traditionally
focused on explaining a broader setting including deduction and
provenance. We developed a framework for extracting and rep-
resenting the state and history of a task system’s reasoning, a
framework that is already proving to be useful for building trust
and explanation services in other agent activities.

ICEE includes initial implementations of all of the described
components, and is seeded with a limited number of strategies,
as prioritized by our trust study. Current work includes expand-

ing these components to provide advanced functionality; addi-
tional capabilities for handling the results of procedure learning
(from instruction and demonstration) that extend and/or up-
date the procedures that the task execution system uses; as well
as a strong focus on explaining conflicts, explaining failures, and
further explaining knowledge provenance, including statistical
machine learning algorithms.

6 Conclusions

We have studied issues governing the trust and usability of com-
plex adaptive agents. Without trust in the actions and results
produced by these agents, they will not be used and widely
adopted as assistants and partners. By interviewing users of
these agents, we have identified several themes that describe
the willingness of users to adopt and trust these agents.

These recommendations are demonstrated in ICEE, our ex-
planation infrastructure. While we focused here on explaining
the task processing component, our solution provides a uniform
way of encoding task execution, deductive reasoning, and learn-
ing components as justifications. The approach is integrated
with the IW infrastructure for supporting knowledge provenance
so that these explanations may be augmented with source infor-
mation, improving end-user understanding. The resulting work
provides not only an explanation infrastructure for a particular
adaptive agent (CALO), but also provides a platform for explain-
ing other hybrid adaptive agents that must explain task learning,
deductive and non-deductive inference, and provenance.5

References
[1] P. Pinheiro da Silva, D. McGuinness, and R. McCool. Knowl-

edge provenance infrastructure. IEEE Data Engineering Bulletin,
26(4):26–32, 2003.

[2] http://www.darpa.mil/ipto/programs/pal/.

[3] http://www.ai.sri.com/project/CALO.

[4] K. Myers, P. Berry, J. Blythe, K. Conley, M. Gervasio,
D. McGuinness, D. Morley, A. Pfeffer, M. Pollack, and
M. Tambe. An intelligent personal assistant for task and time
management. AI Magazine, 28(2), 2007.

[5] A. Glass, D. McGuinness, and M. Wolverton. Toward estab-
lishing trust in adaptive agents. In International Conference on
Intelligent User Interfaces, 2008.

[6] M. Silveira, C. de Souza, and S. Barbosa. Semiotic engineering
contributions for designing online help systems. In SIGDOC’01,
2001.

[7] D. McGuinness, A. Glass, M. Wolverton, and P. Pinheiro da
Silva. A categorization of explanation questions for task process-
ing systems. In AAAI Workshop on Explanation-Aware Comput-
ing, 2007.

[8] D. Walton. Dialogical models of explanation. In AAAI Workshop
on Explanation-Aware Computing, 2007.

[9] K. Höök. Steps to take before intelligent user interfaces become
real. Interacting with Computers, 12(4), 2000.

[10] A. Rao and M. Georgeff. BDI agents: From theory to practice.
In International Conference on Multiagent Systems, 1995.

5This article combines and updates material from papers in the
Proceedings of the 20th International FLAIRS Conference [29] and
the Proceedings of IUI’08 [5].

Page 6



[11] D. Morley and K. Myers. The SPARK agent framework. In
AAMAS-04, 2004.

[12] A. Glass and D. McGuinness. Introspective predicates for ex-
plaining task execution in CALO. Technical Report KSL-06-04,
Knowledge Systems, AI Lab., Stanford Univ, 2006.

[13] B. Hayes-Roth. A blackboard architecture for control. Artificial
Intelligence, 26(3):251–321, 1985.

[14] A. Scott, W. Clancey, R. Davis, and E. Shortliffe. Methods
for generating explanations. In Rule-Based Expert Systems.
Addison-Wesley, 1984.

[15] M. Wick and W. Thompson. Reconstructive expert system ex-
planation. Artificial Intelligence, 54(1–2):33–70, 1992.

[16] D. McGuinness and P. Pinheiro da Silva. Explaining answers
from the semantic web: The inference web approach. Journal of
Web Semantics, 1(4):397–413, 2004.

[17] P. Pinheiro da Silva, D. McGuinness, and R. Fikes. A proof
markup language for semantic web services. Information Sys-
tems, 31(4–5):381–395, 2006.

[18] D. McGuinness, L. Ding, A. Glass, C. Chang, H. Zeng, and
V. Furtado. Explanation interfaces for the semantic web: Issues
and models. In International Semantic Web User Interaction
Workshop, 2006.

[19] D. McGuinness and F. van Harmelen. Owl web ontology language
overview. Technical report, World Wide Web Consortium (W3C),
February 2004. Recommendation.

[20] G. Cortellessa and A. Cesta. Evaluating mixed-initiative systems:
An experimental approach. In ICAPS-06, 2006.

[21] A. Bunt, C. Conati, and J. McGrenere. Supporting interface
customization using a mixed-initiative approach. In International
Conference on Intelligent User Interfaces, 2007.

[22] M. Pazzani. Representation of electronic mail filtering profiles:
A user study. In International Conference on Intelligent User
Interfaces, 2000.

[23] S. Stumpf, V. Rajaram, L. Li, M. Burnett, T. Dietterich, E. Sul-
livan, R. Drummond, and J. Herlocker. Toward harnessing user
feedback for machine learning. In International Conference on
Intelligent User Interfaces, 2007.

[24] W. Johnson. Agents that explain their own actions. In Confer-
ence on Computer Generated Forces and Behavioral Representa-
tion, 1994.

[25] R. Schulman and B. Hayes-Roth. Plan-based construction of
strategic explanations. Technical Report KSL-88-23, Knowledge
Systems Lab., Stanford Univ, 1988.

[26] C. Mellish and R. Evans. Natural language generation from plans.
Computational Linguistics, 15(4), 1989.

[27] R. Young. Using Grice’s maxim of quantity to select the content
of plan descriptions. Artificial Intelligence, 115(2), 1999.

[28] K. Myers. Metatheoretic plan summarization and comparison. In
International Conference on Automated Planning and Schedul-
ing, 2006.

[29] D. McGuinness, A. Glass, M. Wolverton, and P. Pinheiro da
Silva. Explaining task processing in cognitive assistants that
learn. In 20th International FLAIRS Conference, 2007.

Contact

Alyssa Glass
Stanford University
Email: glass@cs.stanford.edu

Deborah L. McGuinness
Rensselaer Polytechnic Institute

Email: dlm@cs.rpi.edu

Paulo Pinheiro da Silva
University of Texas at El Paso
Email: paulo@utep.edu

Michael Wolverton
SRI International
Email: mjw@ai.sri.com

Alyssa Glass is completing her Ph.D. in
Computer Science at Stanford University,
and is a computer scientist in the Artificial
Intelligence Center at SRI International. Her
research involves explaining task execution
and machine learning in adaptive agents, to
make learning-based systems more trustwor-
thy for users. She was previously a computer
scientist at Xerox PARC. She received her
Bachelor’s degree in computer science and
economics from Harvard University.

Deborah L. McGuinness is the Tetherless
World Senior Constellation Chair and Pro-
fessor of Computer Science and Cognitive
Science at Rensselaer Polytechnic Institute.
Her research focuses on the semantic web,
ontologies, explanation, trust, and semantic
eScience. Until recently, Deborah led the
Knowledge Systems Lab at Stanford Univer-
sity. She received her B.S. from Duke Univ.,
M.S. from the Univ. of California at Berke-
ley, and her Ph.D. from Rutgers Univ.

Paulo Pinheiro da Silva is an Assistant Pro-
fessor of Computer Science and leader of the
Trust Laboratory at the Univ. of Texas at
El Paso, and a member of the Cyber-ShARE
Center of Excellence for Cyber-Infrastructure
Applications. Paulo received his B.S. and
M.Sc. from the Federal Univ. of Minas
Gerais, Brazil, and his Ph.D. in computer sci-
ence from Manchester Univ. He is a former
Postdoctoral Fellow of the Knowledge Sys-
tems Laboratory at Stanford Univ.

Michael Wolverton is a Senior Computer
Scientist in SRI’s Artificial Intelligence Lab-
oratory. There he has led research efforts in
a wide range of areas, including link anal-
ysis, explanation, information management,
planning, case-based reasoning, and analogy.
He received his Ph.D. in Computer Science
from Stanford University, and his bachelor’s
degree in Computer Science and Mathemat-
ical Sciences from Rice University.

Page 7


