
Abstracting Web Agent Proofs into Human-Level Justifications

Vasco Furtado1, Paulo Pinheiro da Silva2, Deborah McGuinness3, Priyendra Deshwal4, Dhyanesh
Narayanan3, Juliana Carvalho1, Vladia Pinheiro1, CynthiaChang3

1 Universidade de Fortaleza, Fortaleza, CE, Brazil on sabbatical at Stanford University

2University of Texas, El Paso, TX, USA
3 KSL, Stanford University, Stanford, CA, USA

4Google Inc., Palo Alto, CA, USA

vasco@ksl.stanford.edu, paulo@utep.edu, dlm@ksl.stanford.edu,pryendra@gmail.com, dhyanesh@ksl.stanford.edu,
julianacarvalho@fortalnet.com.br, vladiacelia@terra.com.br, changcs1@stanford.edu

Abstract

Information supporting answer explanations are derived from
proofs. One of the difficulties for humans to understand web
agent proofs is that the proofs are typically described at the
machine-level. In this paper, we introduce a novel and generic
approach for abstracting machine-level portable proofs into
human-level justifications. This abstraction facilitates generating
explanations from proofs on the web. Our approach consists of
creating a repository of proof templates, called abstraction
patterns, describing how machine-level inference rules and
axioms in proofs can be replaced by rules that are more
meaningful for humans. Intermediate results supporting machine-
level proofs may also be dropped during the abstraction process.
The Inference Web Abstractor algorithm has been developed with
the goal of matching the abstraction patterns in the repository
against the original proof and applying a set of strategies to
abstract the proof thereby simplifying its presentation. The tools
used for creating and applying abstraction patterns are shown
along with an intelligence analysis example.1

Introduction
Users should be able to use intelligent web agents to
answer complex queries. A “trace” or proof for the agent’s
final result can be viewed as a combined log describing the
information manipulation steps used by services to derive
the final result. When a human user requests an
explanation of what has been done or what services have
been called, the agent can use an explanation component to
analyze the trace and generate an explanation.
 The ability of software agents to present and justify their
reasoning to human users has been studied in the context
of knowledge-based systems since the 1970’s. The
explanations in those systems typically focused on some
(understandable) presentation of a reasoning trace [1],[2].
Another generation of explanation systems was introduced
with the Explainable Expert System [16] with the goal of
designing systems with explanation in mind. These

1 This work was partially supported by the Defense Advanced Research
Agency (DARPA) through contract #55-300000680 to-2 R2, NSF award
#0427275, and DTO contract #2003*H278000*000.

systems, however, typically have the same strong
assumptions: data and rules are reliable; and the conceptual
domain model is generated by a knowledge engineer along
with a domain expert. Another focus area for explanation
research is that of explaining answers from theorem
proving systems. Recognizing that machine-level proofs
are difficult to read by humans, researchers in that context
try to automatically transform machine-generated proofs
into natural deduction proofs [13], or into assertion-level
proofs [7]. The assertion level approach allows for human-
level macro steps justified by the application of theorems,
lemmas or definitions which are called assertions and that
are supposed to be at the same level of abstraction as if the
proof was generated by a person. However, the
simplifications produced by these approaches are not
abstracted enough to be used as explanations because even
with rule rewriting the semantics behind the logical
formulations are difficult for human users to comprehend.

The distributed and evolving nature and diversity of the
web have broken the assumptions underlying previous
approaches. For example, information extraction
techniques used in an answer derivation process may be
unknown in advance and domain knowledge may be
acquired from different sources, each source representing
knowledge at different levels of granularity. Proofs for
answers in these settings may be complex and may contain
a large number of inference steps that are inappropriate to
show to human users, either because they are obvious or
contain too fine a level of granularity

We present a novel approach to abstract machine-level
proofs from an agent’s reasoning trace into human-level
justifications that can better support explanation generation
processes. Our abstraction approach addresses both
required understandability issues as well as the distributed
nature of the web. We believe explanations can be
improved by choosing appropriate abstraction levels for
presenting proofs including the removal of irrelevant
details. Further, humans familiar with the system may have
insight into abstraction granularity and can distinguish
between relevant/irrelevant details. We provide support for
describing how answer justifications represented in
machine-level proofs can be abstracted into human-level
proofs called explanations. The abstraction methods

attempt to be generic and modular by using proof fragment
templates called abstraction patterns (APs) that may be
used in different proofs. The method is based on these
APs that are likely to match fragments of complete proofs.
Thus the templates can be reused and even combined in
different situations. Using the human-defined APs, the
abstraction method is used to rewrite the ground proof by
dropping logical (granular) axioms and by introducing a
new higher level inference rule encoded in an AP, which is
aimed at human-level justifications.

We create an AP repository that can be either generic or
domain-specific allowing users to generate customized
explanations. An algorithm is used to match the abstraction
patterns with the original proof. In order to use the AP
repository in distributed and diverse contexts on the web,
we have developed our approach within the Inference Web
(IW) framework [10]. In this framework, proofs are
encoded in the Proof Markup Language (PML), which
works as an Interlingua for Web agent’s answer
justifications. The IW Abstractor is a new tool realizing the
abstraction method..

The Inference Web Framework
Inference Web is a framework for explaining reasoning
tasks on the web by storing, exchanging, combining,
abstracting, annotating, comparing and rendering proofs
and proof fragments provided by question answering
applications including Web agents. IW tools provide
support for portable and distributed proofs and proof
presentation, knowledge provenance, and explanation
generation. For example, the IW browser is used to support
navigation and presentations of proofs and their
explanations. IW data includes proofs and explanations
published locally or on the web and represented in PML
[10]. PML is built on top of the Ontology Web Language
(OWL) and inference step and node set are the two main
building blocks of the language. In PML, a proof is
defined as a tree of node sets connected through inference
steps explaining answer derivation processes. Each node
set includes a statement and one or more inference steps.
An inference step is a single application of an inference
rule over the inference step’s antecedents. Inference rules
are used to derive node set conclusions (e.g., a well formed
formula) from any number of antecedents. An inference
step contains pointers to node sets representing antecedent
proofs, the inference rule used, and any variable bindings
used. A node set is a leaf node in a proof if associated
inference steps have no antecedents. Typically, leaf node
inference steps are the result of application of either the
Direct Assertion or Assumption rules.

Abstraction Patterns
Abstraction can be formalized as a pair of formal system
languages plus a mapping between the languages [6]. IW
Abstractor aims to build mappings between machine level
and human level proofs, both represented in PML but

based on different inference rules and axioms. Each node
in a proof represents a set of well formed formulae (wffs)
with at least one associated inference step. Given two
languages Lg and Lp, abs : Lg Lp is an abstraction. Lg
is the ground proof, while Lp is the abstract proof. abs is
the mapping function. An AP is defined by a human expert
and matched against the ground language to produce the
abstraction. An AP is a meta-proof also encoded in PML
where node sets typically represent sentences including
meta-variables that will be unified during the matching
process. IW Abstractor is specifically interested in using
abstraction patterns that result in simpler, more
understandable proofs. The Abstractor algorithm (see next
section) uses the patterns to prune details that inhibit proof
comprehension and thus can be used to enable better
understanding.

The application of abstraction patterns in a ground proof
will produce abstracted proofs (APr). The abstracted proof
contains a portion of the ground proof including less detail
along with the new inference rule identifying the
abstraction pattern applied.

Creating Abstraction Patterns
There is an element of design involved in the process of
creating APs and a precise algorithm may not be
prescribed for this task. The general steps below provide
guidance about the goals of writing abstract patterns:
• Hiding machine-level inference rules, e.g., resolution

and universal quantifier elimination.
• Hiding complex axioms that are implicitly identified

in the name of rules in APrs.
• Hiding parts of the proof that may be irrelevant (or too

obvious) for certain kinds of explanations.
• Removing intermediate results that are unnecessary

for human understanding of the justification.
For instance, Transitivity is a property of the subclass-of
relation as well as many others such as part-of, before, etc.
Many reasoners use axioms describing such a property
during answer derivation processes. In doing so, proofs
become large and full of detailed steps which may not be
appropriate for human-consumption justifications. So, in
this context, an AP has the goal of abstracting away steps
used by the reasoner to conclude anything based on
transitivity.

Editing and Creating Abstraction patterns
One of the ways to construct APs is by modifying existing
proofs. An AP editor was developed to help the creation of
syntactically correct APs from existing proofs. Figure 1
shows an example of this editing process using the
property of transitivity. The example is from the KSL
Wine Agent that uses deductive reasoning to match foods
and wines. In this case it is matching a wine to Tony’s
Speciality. After learning that the food should be paired
with a white wine, someone has asked for the type of the
food being matched. The proof generated by the JTP

reasoner is shown by the IW browser. Tony’s specialty
turns out to be a crab dish and the reasoner used a number
of steps to derive that crab is a type of seafood. This proof

fragment is outlined in Figure 1. Using the editor, the AP
designer decides to reuse the proof fragment from the
nodeset that defines subClassof CRAB SEAFOOD.

Figure 1 Class transitivity AP from the Seafood domain

S/He drops the nodesets of the right part of the proof tree
as well as those that are duplicated because they won’t be
used in the abstraction.
In order to create its final specification, the designer needs
to substitute the identifiers in the ground proof fragment
with variables. The AP Editor offers support for this task
by means of a global Search/Replace mechanism. For
instance replacing subClassOf CRAB SHELLFISH by
?subClassOf ?c ?b. The final AP template is depicted in
the small window of Figure 1. The basic idea behind such
an editing process is that in order to explain that a
conclusion was obtained by transitivity only the outlined
predicates are necessary from a human end-user point of
view. Then, in the process of abstraction when such a
pattern is found all the other nodes can be abstracted away.

The Abstractor Algorithm
The IW Abstractor is a tool available as a web service that
uses the AP repository to transform IW proofs. It consists
of two phases: AP matching and ground proof abstraction.
For each AP in the repository, the Abstractor tries initially
to match its conclusion then the leaf nodes with those of
the ground proof. After a match is found, the pattern is
applied to abstract the ground proof by dropping those
ground axioms that are subsumed into the abstraction
pattern and by replacing the name of the inference rule as a
justification for the nodeset conclusion. The abstraction
algorithm is described in Frame 1. The main function
abstractProof calls the match and abstractNodeset
functions. The match function then calls the
matchLeafNodes function. We have implemented a
unification algorithm based on [14] with linear time
complexity. The overall complexity however of the
abstractor algorithm is exponential because, maintaining
axiom order independence requires permutation of the
abstraction patterns’ leaf nodes for each unification. Since
the typical number of leaf nodes of an AP is small (varying
from three to seven), abstraction in practice remains viable.
Moreover, we have computed a hash code that is used as
an index to guide the pattern-matching phase of the
algorithm. The code is built based on the predicate of the
nodeset and its variables. Each nodeset keeps a list of hash
codes of its antecedents. When the algorithm tries to match
an AP’s nodeset against a proof’s nodeset, the hash code is
generated. With this code, the algorithm checks the list of
hash codes from the nodesets in the proof and finds out if
the code of the template it is looking for is part of the
proof. For example, if the algorithm is looking for a match
for a nodeset with a template “p x1 x2”, where p is the
predicate and x1 and x2 are the variables, it generates the
hash code for this template and then checks if this hash
code is present in the hash code list of the nodesets in the
proof. This technique prevents the algorithm from
searching the whole proof tree for a nodeset in which the
template is not found in the proof.

n0: conclusion nodeset of the proof to be
abstracted
abstractProof(n0):
 for each abstraction pattern r,
 if(match(n0, r)<>[])
 abstractNodeset(match(n0, r), n0, r);
 else
 next r;
 if all r's exhausted,
 for all antecedents n of n0,
 abstractProof(n);
abstractNodeset(L, n, r):
// Verify if the abstraction can be done by
checking if there will be isolated nodes after
abstraction
 If (IsThereIsolatedNodes(L,n) == false)
 Create new nodeset n'
 n'.conclusion = n.conclusion
 add inference step with rule r to n'
 add leaf nodes of L which are flag on as
immediate antecedents of n'
 drop leaf nodes of L which are marked
as flag off
 drop all the nodes subsumed by L until
n.conclusion
 call abstractProof on these new antecedents
of n'
match(n, r) :
// returns the nodes in n that are matched
 n: nodeset to be matched
 r: rule to be matched

 walk the tree for rule r to get a list L1 of
leaf nodes + conclusion
 walk the tree for nodeset n to get list L2 of
conclusion + antecedents

//try to match the conclusion of the rule with
all intermediate nodes of the proof
 for all elements i of L2 except leaf nodes{
 if (unifiable(r.conclusion, i)) {
 int unifiedNodes = matchLeafNodes(i);
 if (L1.size == unifiedNodes);
 return L2
 }else{
 return [];
 }
matchLeafNodes(i):
 //matching continues for leaf nodes of L1
 //returns unified nodes count
walk the tree for nodeset i to get list L3 of
antecedents
 int unifiedNodes=0;
 for all elements q of L3{
 for all elements p of L1 {
 //try to match all leaf nodes of the rule with
 all nodes of the proof
 //this is for order independence
 if(unifiable(p, q))
 unifiedNodes++;
 }
 }

Frame 1. Abstractor Algorithm

Populating the AP Repository
The success of the approach depends on the size of the AP
repository. Generic and domain-independent APs are ideal
but domain-specific patterns can also be constructed and
are sometimes quite useful for simplifying specific proofs.
In this section we describe some APs already available in

the AP repository and their use in different contexts. The
generic pattern shown here refers to the definition of
transitivity. Several relationships possess such a property.

The class-subclass relationship, for instance, states that
If X is a subclass of Y, and Y is a subclass of Z, then X is a
subclass of Z. In a similar way the Instance-Class
transitivity states that If X is a subclass of Y, and x is an
instance of X, then x is also an instance of Y. Besides
generic relationships, domain-specific ones are created as
shown in the example below.

Case Study
We will describe how the abstraction approach has been

used in the Knowledge Associates for Novel Intelligence
(KANI) project within the DTO NIMD program. KANI
supports the intelligence analysis task [12]. by helping
analysts identify, structure, aggregate, analyze, and
visualize task relevant information. It also helps them to
construct explicit models of alternative hypotheses
(scenarios, relationships, causality, etc.). As part of this
effort, a Query Answering and Explanation component
was developed that allows analysts to pose questions to the
system. Answers are presented along with optional
information about sources, assumptions, explanation
summaries, and interactive justifications. In the KANI
setting, not all data sources are reliable or current.
Additionally, some information manipulation techniques
(such as information extractors) may be unknown in
advance. In this particular example, concepts such as
person, office, owner and organization are involved in a
reasoning process that aims at concluding the relationship
between owners of an organization and their offices.

Figure 2 shows an example of abstraction where the
domain-specific AP, named “Organization owner typically
has office at the organization”, can abstract away details of
the proof. The Figure depicts the original piece of proof
and the derivation done to generalize the proof. The
ground axioms that the designer wished to maintain have
been specified in the inference rule (in this case a direct
assertion) that produces it. The abstracted template
depicted in the upper part of Figure 2 describes the way an
AP was generated from an original proof generated from
JTP. Basically, there are two applications of modus ponens
from direct assertions and implications that are simply
saying that “an organization owner typically has an office
at his/her organization”. The abstracted proof is depicted in
the right upper side. A possible explanation in English for
the conclusion that “JosephGradgrind had an office at
GradgrinFoods on April 1st, 2003” has been derived from
the abstracted proof and it is presented in the right bottom.

Related Work and Discussion
Some proof transformation efforts share similar goals with
our approach. Huang [8] studied resolution proofs in terms
of meaningful operations employed by mathematicians.
Huang argues that the transformation of machine-
generated proofs in a well-structured natural deduction
would help mathematicians comprehension. Our approach
is designed to be used both by experts (e.g., logicians) and
by lay-users. In this context Natural Deduction proofs are
not abstract enough to provide users with an understanding
of the reasoning process. Dahn and Wolf [3],[4] propose a
variant of Natural Deduction called Block Calculus (BC)
that can hide uninteresting formal sub proofs to facilitate
the human users understanding.

Figure 2 Example of utilization of domain-specific Abstracted Pattern.

The user can edit the simplified proof in the BC tool as a
sequence of proof lines similar to the text in a text editor.
However, this approach requires user edition for every
proof and isn’t appropriate in universal environments like
Web. In our approach, the APs are designed by experts and
the final users receive the abstracted proofs, according the
APs that were used. Oliveira et al.[13] have shown that
natural deduction proofs possess irrelevant information for
explanations to human users. They define several strategies
for proof simplification but their approach is restricted to
these kinds of proofs and some strategies can only be
applied in normalized proofs to guarantee that minimal
formula fragments are obtained. Again the assumption of
knowing about the features of the proof is impractical in
the context of the complex distributed systems. Fiedler
and Horacek [9] have considered that natural deduction
proofs are very large with many irrelevant details that
diminish human comprehension. They proposed an
interactive method that provides increased or decreased
detail depending upon the audience. Simple axioms
assumed to be known by the audience are hidden. Such an
approach has been used in the context of intelligent tutorial
systems where it is possible to categorize the human user
(i.e., the student). Such an assumption cannot be done in
the context of the web. Denzinger and Schulz [5] presents
a method for simplifying distributed proofs based on
several heuristics as structural features (i.e. how isolated a
sub proof is). We think that this approach is
complementary to ours since we believe that pre-defined
heuristics together with expert built patterns, like those we
are proposing, are synergetic.
 Our approach has a limitation of requiring a skilled
designer for the abstraction patterns. The task of designing
an AP is in some way subjective and the final explanation
to a certain conclusion will strongly depend on the quality
of these patterns.

Conclusion and Future Work
We described a generic approach for abstracting machine-
level proofs generated from different reasoners on the web
and encoded in PML into human-level justifications.
Abstraction patterns used in the abstraction method are
manually defined with the assistance of a set of tools to
manipulate proofs in PML. From these patterns, the
Abstractor algorithm walks along the proof tree matching
the abstraction patterns and abstracting away irrelevant
axioms thereby producing human-level explanations for
answering queries.
We are studying ways to automatically prune axioms in the
whole proof. Our idea is to propagate axiom elimination by
the application of simplification strategies in certain
axioms affected by specific inference rules. The or-
inclusion in Natural Deduction Systems is an example of
an inference rule that produces irrelevant axioms that can
be eliminated from the entire proof. Typically, these
axioms are inserted with the only goal of supporting

resolution although they do not add any new information
for explanation purposes.

References
[1] B. Buchanan, and E. Shortliffe. Rule based expert systems:

The MYCIN experiments of the Stanford Heuristic
Programming Project, Addison-Wesley, Reading, MA,
1984.

[2] W. Clancey. From GUIDON to NEOMYCIN and
HERACLES in Twenty Short Lessons: ORN Final Report
1979-1985, AI Magazine, 7(3), pp. 40-60, 1986.

[3] B. Dahn and A. Wolf. Natural Language presentation and
Combination of Automatically Generated Proofs. Frontiers
of Combining Systems,pp: 175-192, 1996.

[4] B. Dahn and A. Wolf. A Calculus Supporting Structured
Proofs. Journal of Information Processing and Cybernetics,
(5-6), pp: 262-276, 1994.

[5] J. Denzinger and S. Schulz. Recording and Analyzing
Knowledge-based Distributed Deduction Process. Journal of
Symbolic Computation, (11), 1996.

[6] C. Ghidini and F. Giunchiglia. A Semantics for Abstraction,
European Conference on AI, 2004.

[7] X. Huang. Planning Argumentative Texts. In Proceedings of
COLING94, Kyoto, 1994.

[8] X. Huang. Human Oriented Proof Presentation: A
Reconstructive Approach. Ph. D Dissertation, DISKI 112,
Saint Agustin, 1996.

[9] A. Fieldler, H. Horacek. Argumentation in Explanations to
Logical Problems. Proceedings of ICCS, LNCS 2073,
Springer Verlag, 2001.

[10] D. McGuinness and P. Pinheiro da Silva. Explaining
Answers from the Semantic Web: The Inference Web
Approach. Journal of Web Semantics.(1), n.4., pp: 397-413,
2004.

[11] D. McGuinness and P. Pinheiro da Silva. Infrastructure for
Web Explanations. In Proceedings of 2nd International
Semantic Web Conference (ISWC2003), D. Fensel, K.
Sycara and J. Mylopoulos (Eds.), LNCS 2870, Sanibel Is.,
FL, USA. Springer, pp: 113-129, 2003.

[12] J. Murdock, D. McGuinness, P. Pinheiro da Silva, C. Welty,
and D. Ferrucci. Explaining Conclusions from Diverse
Knowledge Sources. Proc. of the 5th International Semantic
Web Conference), pp:861-872, Athens, GA, 2006.

[13] D. Oliveira, C. de Souza, E. Haeusler. Structured Argument
Generation in a Logic-Based KB-System. In Logic,
Language and Computation, L. Moss, J. Ginzburg, M. de
Rijke (eds). v. 2. CSLI Publication, 1999.

[14] M. Paterson and M. Wegman. Linear Unification. ACM
Symposium of Theory of Computing, 181-186, 1976.

[15] V. Pinheiro, V. Furtado, P. Pinheiro da Silva, D.
McGuinness. WebExplain: A UPML Extension to Support
the Development of Explanations in the Web for
Knowledge-Based Systems. Proc. Software Engineering and
Knowledge Engineering Conference, San Francisco, 2006.

[16] W. Swartout, C. Paris, and J. Moore. Explanations in
Knowledge Systems: Design for Explainable Expert
Systems. IEEE Expert: Intelligent Systems and Their
Applications, (6), n. 3, pp. 58-64, 1991.

